Graphing ACTIVITY Use after Lesson 11.1

11.1 Graph Square Root Functions

2A.9.C

QUESTION

How can you use a graphing calculator to graph square root functions?

EXAMPLE

Graph the function $y = \sqrt{2x + 3}$ and describe its domain and range

STEP 1 Enter the function

Enter the function into a graphing calculator. Use parentheses around the radicand.

Y1■√(2X+3) Y 2 = Y3= Y 4 = Y 5 =

STEP 2 Graph the function

Graph the function. Adjust the viewing window if necessary.

STEP 3 Describe the domain and range

From the graph, you can see that the domain is all real numbers greater than or equal to -1.5, or $x \ge -1.5$. The range is all nonnegative numbers, or $y \ge 0$.

PRACTICE

Graph the function using a graphing calculator. Then describe the domain and range of the function.

1.
$$y = \sqrt{4x}$$

2.
$$y = \sqrt{9x}$$
 3. $y = \sqrt{7x}$

3.
$$y = \sqrt{7x}$$

4.
$$y = -\sqrt{10x}$$

5.
$$y = -3\sqrt{x}$$

4.
$$y = -\sqrt{10x}$$
 5. $y = -3\sqrt{x}$ **6.** $y = 1.5\sqrt{3x}$

7.
$$y = 4.4\sqrt{8x}$$

8.
$$y = \sqrt{2x + 8}$$

7.
$$y = 4.4\sqrt{8x}$$
 8. $y = \sqrt{2x+8}$ **9.** $y = \sqrt{3x+4}$

10.
$$y = -\sqrt{2x - 5}$$

11
$$v = -\sqrt{4x - 6}$$

10.
$$y = -\sqrt{2x - 5}$$
 11. $y = -\sqrt{4x - 6}$ **12.** $y = \frac{1}{2}\sqrt{6 - 5x}$

- 13. **ROLLER COASTER** If friction is ignored, the velocity v (in meters per second) of a roller coaster when it reaches the bottom of a hill can be calculated using the formula $v = \sqrt{19.6}h$ where h (in meters) is the height of the hill.
 - a. Graph the function and describe its domain and range.
 - **b.** Use the graph to find the height of a hill if the velocity of the roller coaster at the bottom of the hill is 55 meters per second.