

SKILL PRACTICE

- 1. **VOCABULARY** What formula can be used to solve any quadratic equation?
- What method(s) would vou use to solve $-x^2 + 8x = 1$? 2. WRITING Explain your choice(s).

EXAMPLES 1 and 2

on pp. 671-672 for Exs. 3-27

SOLVING QUADRATIC EQUATIONS Use the quadratic formula to solve the equation. Round your solutions to the nearest hundredth, if necessary.

3.
$$x^2 + 5x - 104 = 0$$

4.
$$4x^2 - x - 18 = 0$$

3.
$$x^2 + 5x - 104 = 0$$
 4. $4x^2 - x - 18 = 0$ **5.** $6x^2 - 2x - 28 = 0$

6.
$$m^2 + 3m + 1 = 0$$

7.
$$-z^2 + z + 14 = 0$$

6.
$$m^2 + 3m + 1 = 0$$
 7. $-z^2 + z + 14 = 0$ **8.** $-2n^2 - 5n + 16 = 0$

9.
$$4w^2 + 20w + 25 = 0$$

10.
$$2t^2 + 3t - 11 = 0$$

9.
$$4w^2 + 20w + 25 = 0$$
 10. $2t^2 + 3t - 11 = 0$ **11.** $-6g^2 + 9g + 8 = 0$

12. \blacktriangleright TAKS REASONING What are the solutions of $10x^2 - 3x - 1 = 0$?

(A)
$$-\frac{1}{5}$$
 and $-\frac{1}{2}$

B
$$-\frac{1}{5}$$
 and $\frac{1}{2}$

(A)
$$-\frac{1}{5}$$
 and $-\frac{1}{2}$ **(B)** $-\frac{1}{5}$ and $\frac{1}{2}$ **(C)** $\frac{1}{5}$ and $-\frac{1}{2}$ **(D)** $\frac{1}{5}$ and $\frac{1}{2}$

$$\bigcirc$$
 $\frac{1}{5}$ and $\frac{1}{2}$

SOLVING QUADRATIC EQUATIONS Use the quadratic formula to solve the equation. Round your solutions to the nearest hundredth, if necessary.

13.
$$x^2 - 5x = 1$$

14.
$$3x^2 - 4 = 11x$$

15
$$9 = 7x^2 - 2x$$

16.
$$2m^2 + 9m + 7 = 3$$

17
$$-10 = r^2 - 10r + 12$$

18.
$$3g^2 - 6g - 14 = 3g$$

$$\mathbf{19.} \ 6z^2 = 2z^2 + 7z + 5$$

20.
$$8h^2 + 8 = 6 - 9h$$

13.
$$x^2 - 5x = 14$$
14. $3x^2 - 4 = 11x$ 15. $9 = 7x^2 - 2x$ 16. $2m^2 + 9m + 7 = 3$ 17. $-10 = r^2 - 10r + 12$ 18. $3g^2 - 6g - 14 = 3g$ 19. $6z^2 = 2z^2 + 7z + 5$ 20. $8h^2 + 8 = 6 - 9h$ 21. $4t^2 - 3t = 5 - 3t^2$

22.
$$-4y^2 - 3y + 3 = 2y + 4$$
 23. $7n + 5 = -3n^2 + 2$ **24.** $5w^2 + 4 = w + 6$

23.
$$7n + 5 = -3n^2 + 2$$

24.
$$5w^2 + 4 = w + 6$$

25. \clubsuit TAKS REASONING What are the solutions of $x^2 + 14x = 2x - 11$?

ERROR ANALYSIS Describe and correct the error in solving the equation.

26.
$$7x^2 - 5x - 1 = 0$$

$$x = \frac{-5 \pm \sqrt{(-5)^2 - 4(7)(-1)}}{2(7)}$$

$$= \frac{-5 \pm \sqrt{53}}{14}$$

$$x \approx -0.88 \text{ and } x \approx 0.16$$

27.
$$-2x^2 + 3x = 1$$

$$x = \frac{-3 \pm \sqrt{3^2 - 4(-2)(1)}}{2(-2)}$$

$$= \frac{-3 \pm \sqrt{17}}{-4}$$

$$x \approx -0.28 \text{ and } x \approx 1.78$$

EXAMPLE 4

on p. 673 for Exs. 28-33 **CHOOSING A METHOD** Tell what method(s) you would use to solve the quadratic equation. Explain your choice(s).

28.
$$3x^2 - 27 = 0$$

29.
$$5x^2 = 25$$

30.
$$2x^2 - 12x = 0$$

31.
$$m^2 + 5m + 6 = 0$$

32.
$$z^2 - 4z + 1 = 0$$

31.
$$m^2 + 5m + 6 = 0$$
 32. $z^2 - 4z + 1 = 0$ **33.** $-10g^2 + 13g = 4$