SKILL PRACTICE

- 1. VOCABULARY Copy and complete: Every quadratic function has a U-shaped graph called a(n) ? .
- Explain how you can tell whether the graph of a quadratic function opens up or down.

MATCHING Match the quadratic function with its graph.

3.
$$y = \frac{1}{2}x^2 - 4$$

4.
$$y = \frac{1}{2}x^2 - 2$$

5.
$$y = -\frac{1}{2}x^2 + 2$$

EXAMPLES 1, 2, and 3

on pp. 628-629 for Exs. 6-23

GRAPHING QUADRATIC FUNCTIONS Graph the function. Compare the graph with the graph of $y = x^2$.

6.
$$y = 8x^2$$

7.
$$y = -2x^2$$
 8. $y = -3x^2$ **9.** $y = 5x^2$

8.
$$y = -3x^2$$

9.
$$y = 5x^2$$

10.
$$y = \frac{11}{2}x^2$$

11.
$$y = \frac{2}{3}x^2$$

12.
$$y = -\frac{3}{4}x^2$$

10.
$$y = \frac{11}{2}x^2$$
 11. $y = \frac{2}{3}x^2$ **12.** $y = -\frac{3}{4}x^2$ **13.** $y = -\frac{1}{9}x^2$

14.
$$y = \frac{3}{8}x^2$$

14.
$$y = \frac{3}{8}x^2$$
 15. $y = -\frac{1}{5}x^2$ **16.** $y = x^2 - 7$ **17.** $y = x^2 + 9$

16.
$$y = x^2 - 7$$

17.
$$y = x^2 + 9$$

18.
$$y = x^2 + 6$$

19.
$$v = x^2 - 4$$

20.
$$v = x^2 - 1$$

18.
$$y = x^2 + 6$$
 19. $y = x^2 - 4$ **20.** $y = x^2 - 1$ **21.** $y = x^2 + \frac{7}{4}$

22. TAKS REASONING What is the vertex of the graph of the function $y = -\frac{3}{4}x^2 + 7?$

$$(A)$$
 $(-7, 0)$

$$(\mathbf{B})$$
 $(0, -7)$ (\mathbf{C}) $(0, 7)$

23. ERROR ANALYSIS Describe and correct the error in drawing and comparing the graphs of $y = x^2$ and $y = x^2 - 2$.

Both graphs open up and have the same axis of symmetry. However, the vertex of the graph of $y = x^2 - 2$, (0, 2), is 2 units above the vertex of the graph of $y = x^2$, (0, 0).