
EXAMPLE 1

on p. 520 for Exs. 4-8 **WRITING FUNCTIONS** Write a rule for the function.

4.	X	-2	-1	0	1	2
	y	1	2	4	8	16

X	-2	-1	0	1	2
y	5	25	125	625	3125

7.	X	-2	-1	0	1	2
	y	1 81	<u>1</u> 27	<u>1</u> 9	<u>1</u>	1

8. WRITING Given a table of values, describe how can you tell if the table represents a linear function or an exponential function.

EXAMPLE 2

on p. 521 for Exs. 9-21 **GRAPHING FUNCTIONS** Graph the function and identify its domain and range.

9.
$$y = 4^x$$

10.
$$y = 7^x$$

11.
$$y = 8^x$$

12.
$$y = 9^x$$

13.
$$y = (1.5)^x$$
 14. $y = (2.5)^x$ **15.** $y = (1.2)^x$ **16.** $y = (4.3)^x$

14.
$$y = (2.5)^x$$

15.
$$y = (1.2)^3$$

16.
$$y = (4.3)^3$$

17.
$$y = \left(\frac{4}{3}\right)^x$$

18.
$$y = \left(\frac{7}{2}\right)^x$$

19.
$$y = \left(\frac{5}{3}\right)^x$$

17.
$$y = \left(\frac{4}{3}\right)^x$$
 18. $y = \left(\frac{7}{2}\right)^x$ **19.** $y = \left(\frac{5}{3}\right)^x$

21. ERROR ANALYSIS The price P (in dollars) of a pound of flour was \$.27 in 1999. The price has increased by about 2% each year. Let t be the number of years since 1999. Describe and correct the error in finding the price of a pound of flour in 2002.

$$P = a(1 + r)^{t}$$
$$= 0.27(1 + 2)^{3} = 0.27(3)^{3} = 7.29$$

In 2002 the price of a pound of flour was \$7.29.

EXAMPLE 3

on p. 521 for Exs. 22-34 **COMPARING GRAPHS OF FUNCTIONS** Graph the function. Compare the graph with the graph of $y = 3^x$.

22.
$$y = 2 \cdot 3^x$$

23.
$$y = 4 \cdot 3^x$$

22.
$$y = 2 \cdot 3^x$$
 23. $y = 4 \cdot 3^x$ **24.** $y = \frac{1}{4} \cdot 3^x$ **25.** $y = \frac{2}{3} \cdot 3^x$

25.
$$y = \frac{2}{3} \cdot 3^{\frac{1}{2}}$$

26.
$$v = 0.5 \cdot 3^x$$

26.
$$y = 0.5 \cdot 3^x$$
 27. $y = 2.5 \cdot 3^x$ **28.** $y = -2 \cdot 3^x$ **29.** $y = -4 \cdot 3^x$

28.
$$y = -2 \cdot 3^{3}$$

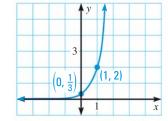
29.
$$y = -4 \cdot 3^x$$

30.
$$y = -\frac{1}{4} \cdot 3^3$$

30.
$$y = -\frac{1}{4} \cdot 3^x$$
 31. $y = -\frac{2}{3} \cdot 3^x$ **32.** $y = -0.5 \cdot 3^x$ **33.** $y = -2.5 \cdot 3^x$

32.
$$y = -0.5 \cdot 3^x$$

33.
$$y = -2.5 \cdot 3^x$$


34. TAKS **REASONING** The graph of which function is shown?

$$A $f(x) = 6^3$$$

(A)
$$f(x) = 6^x$$
 (B) $f(x) = \left(\frac{1}{3}\right)^x$

©
$$f(x) = \frac{1}{3} \cdot 6^3$$

©
$$f(x) = \frac{1}{3} \cdot 6^x$$
 D $f(x) = 6 \cdot \left(\frac{1}{3}\right)^x$

- If a population triples each year, what is the population's 35. WRITING growth rate (as a percent)? Explain.
- **36. CHALLENGE** Write a linear function and an exponential function whose graphs pass through the points (0, 2) and (1, 6).
- **37. CHALLENGE** Compare the graph of the function $f(x) = 2^{x+2}$ with the graph of the function $g(x) = 4 \cdot 2^x$. Use properties of exponents to explain your observations.

