## 8.5

# **5** Write and Graph Exponential Growth Functions



Before

You wrote and graphed linear models.

Now

You will write and graph exponential growth models.

Why?

So you can find the value of a collector car, as in Example 4.

#### **Key Vocabulary**

- exponential function
- exponential growth
- compound interest

An **exponential function** is a function of the form  $y = ab^x$  where  $a \neq 0$ , b > 0, and  $b \neq 1$ . Exponential functions are *nonlinear* functions. Observe how an exponential function compares with a linear function.

#### Linear function: y = 3x + 2



#### Exponential function: $y = 2 \cdot 3^x$



#### **EXAMPLE 1**

#### Write a function rule

Write a rule for the function.

| X | -2 | -1 | 0 | 1  | 2  |
|---|----|----|---|----|----|
| y | 2  | 4  | 8 | 16 | 32 |

#### **Solution**

**STEP 1 Tell** whether the function is exponential.



Here, the *y*-values are multiplied by 2 for each increase of 1 in x, so the table represents an exponential function of the form  $y = ab^x$  where b = 2.

**STEP 2** Find the value of a by finding the value of y when x = 0. When x = 0,  $y = ab^0 = a \cdot 1 = a$ . The value of y when x = 0 is 8, so a = 8.

**STEP 3** Write the function rule. A rule for the function is  $y = 8 \cdot 2^x$ .

### /

#### **GUIDED PRACTICE**

#### for Example 1

1. Write a rule for the function.

| X | -2 | -1 | 0  | 1  | 2   |
|---|----|----|----|----|-----|
| y | 3  | 9  | 27 | 81 | 243 |