- **9. TAKS REASONING** Which equation is a direct variation equation?
- **(A)** y = 7 3x **(B)** 3x 7y = 1 **(C)** 3x 7y = 0 **(D)** 3y = 7x 1

10. ERROR ANALYSIS *Describe* and correct the error in identifying the constant of variation for the direct variation equation -5x + 3y = 0.

$$-5x + 3y = 0$$

 $3y = 5x$
The constant of variation is 5.

EXAMPLE 2

on p. 254 for Exs. 11-22

GRAPHING EQUATIONS Graph the direct variation equation.

11.
$$y = x$$

12.
$$y = 3x$$

13.
$$y = -4x$$

14.
$$y = 5x$$

15.
$$y = \frac{4}{3}x$$
 16. $y = \frac{1}{2}x$

16.
$$y = \frac{1}{2}x$$

17.
$$y = -\frac{1}{2}x$$

17.
$$y = -\frac{1}{3}x$$
 18. $y = -\frac{3}{2}x$

19.
$$12y = -24x$$
 20. $10y = 25x$

20.
$$10v = 25x$$

21.
$$4x + y = 0$$
 22. $y - 1.25x = 0$

22.
$$y - 1.25x = 0$$

EXAMPLE 3

on p. 254 for Exs. 23-25 **WRITING EQUATIONS** The graph of a direct variation equation is shown. Write the direct variation equation. Then find the value of y when x = 8.

IDENTIFYING DIRECT VARIATION EQUATIONS Tell whether the table represents direct variation. If so, write the direct variation equation.

- **26.** 1 2 3 6 X 4 5 10 15 20 30 y
- 27. 1 5 -20 2 6 y
- 28. WRITING A student says that a direct variation equation can be used to model the data in the table. Explain why the student is mistaken.

X	2	4	8	16
y	1	2	4	6

WRITING EQUATIONS Given that y varies directly with x, use the specified values to write a direct variation equation that relates x and y.

29.
$$x = 3, y = 9$$

30.
$$x = 2, y = 26$$

31.
$$x = 14$$
, $y = 7$

32.
$$x = 15, y = -5$$

33.
$$x = -2$$
, $y = -2$ **34.** $x = -18$, $y = -4$

34.
$$y = -18$$
 $y = -4$

35.
$$x = \frac{1}{4}, y = 1$$
 36. $x = -6, y = 15$

36.
$$x = -6$$
, $y = 15$

37.
$$x = -5.2$$
, $y = 1.4$

- If y varies directly with x, does x vary directly with y? If so, what is the relationship between the constants of variation? *Explain*.
- **39. CHALLENGE** The slope of a line is $-\frac{1}{3}$, and the point (-6, 2) lies on the line. Use the formula for the slope of a line to determine if the equation of the line is a direct variation equation.