EXAMPLE 2

on p. 111 for Exs. 15-22 **APPROXIMATING SQUARE ROOTS** Approximate the square root to the nearest integer.

15.
$$\sqrt{10}$$

16.
$$-\sqrt{18}$$

17.
$$-\sqrt{3}$$

18.
$$\sqrt{150}$$

$$(19) - \sqrt{86}$$

20.
$$\sqrt{40}$$
 21. $\sqrt{200}$

22.
$$-\sqrt{65}$$

23. \clubsuit TAKS REASONING Which number is between -30 and -25?

(A)
$$-\sqrt{1610}$$

B
$$-\sqrt{680}$$

(C)
$$-\sqrt{410}$$

(D)
$$-\sqrt{27}$$

EXAMPLES 3 and 4

on p. 112 for Exs. 24-29 **CLASSIFYING AND ORDERING REAL NUMBERS** Tell whether each number in the list is a real number, a rational number, an irrational number, an integer, or a whole number. Then order the numbers from least to greatest.

24.
$$\sqrt{49}$$
, 8, $-\sqrt{4}$, -3

25.
$$-\sqrt{12}$$
, -3.7 , $\sqrt{9}$, 2.9

26.
$$-11.5$$
, $-\sqrt{121}$, -10 , $\frac{25}{2}$, $\sqrt{144}$

27.
$$\sqrt{8}$$
, $-\frac{2}{5}$, -1 , 0.6, $\sqrt{6}$

28.
$$-\frac{8}{3}$$
, $-\sqrt{5}$, 2.6, -1.5 , $\sqrt{5}$

29.
$$-8.3$$
, $-\sqrt{80}$, $-\frac{17}{2}$, -8.25 , $-\sqrt{100}$

EXAMPLE 5

on p. 113 for Exs. 30-33 **ANALYZING CONDITIONAL STATEMENTS** Rewrite the conditional statement in if-then form. Then tell whether the statement is true or false. If it is false, give a counterexample.

- 30. All whole numbers are real numbers.
- 31. All real numbers are irrational numbers.
- **32.** No perfect squares are whole numbers.
- 33. No irrational numbers are whole numbers.

EVALUATING EXPRESSIONS Evaluate the expression for the given value of x.

34.
$$3 + \sqrt{x}$$
 when $x = 9$

35.
$$11 - \sqrt{x}$$
 when $x = 81$

36.
$$4 \cdot \sqrt{x}$$
 when $x = 49$

37.
$$-7 \cdot \sqrt{x}$$
 when $x = 36$

38.
$$-3 \cdot \sqrt{x} - 7$$
 when $x = 121$

39.
$$6 \cdot \sqrt{x} + 3$$
 when $x = 100$

40.
$$\frac{\sqrt{x}}{x}$$
 when $x = 4$

41.
$$\frac{\sqrt{x}}{5}$$
 – 17 when $x = 25$

- 42. TAKS REASONING Without using a calculator, find three rational numbers between $-\sqrt{26}$ and $-\sqrt{15}$. *Explain* how you found the numbers.
- **43.** \clubsuit **TAKS REASONING** If x = 36, the value of which expression is a perfect square?

(A)
$$\sqrt{x} + 17$$

(A)
$$\sqrt{x} + 17$$
 (B) $87 - \sqrt{x}$ **(C)** $5 \cdot \sqrt{x}$

$$\bigcirc$$
 5 • \sqrt{x}

D
$$8 \cdot \sqrt{x} + 2$$

- Simplify $\sqrt{x^2}$ using the definition of square root. Then verify vour answer using several values of x that are perfect squares.
- **45. CHALLENGE** Find the first five perfect squares x such that $2 \cdot \sqrt{x}$ is also a perfect square. Describe your method.
- **46. CHALLENGE** Let *n* be any whole number from 1 to 1000. For how many values of *n* is \sqrt{n} a rational number? *Explain* your reasoning.