Properties

Properties of Addition and Multiplication

Commutative Properties (pp. 75, 89) The order in which you add two numbers does not change the sum. The order in which you multiply two numbers does not change the product.	$a + b = b + a$ $a \cdot b = b \cdot a$
Associative Properties (pp. 75, 89) The way you group three numbers in a sum does not change the sum. The way you group three numbers in a product does not change the product.	$(a + b) + c = a + (b + c)$ $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
Identity Properties (pp. 75, 89) The sum of a number and the additive identity, 0, is the number. The product of a number and the multiplicative identity, 1, is the number.	$a + 0 = 0 + a = a$ $a \cdot 1 = 1 \cdot a = a$
Inverse Properties (pp. 75, 103) The sum of a number and its additive inverse, or opposite, is 0. The product of a nonzero number and its multiplicative inverse, or reciprocal, is 1.	$a + (-a) = -a + a = 0$ $a \cdot \frac{1}{a} = \frac{1}{a} \cdot a = 1 \ (a \neq 0)$
Distributive Property (p. 96) You can multiply a number and a sum by multiplying each term of the sum by the number and then adding these products. The same property applies to the product of a number and a difference.	a(b + c) = ab + ac (b + c)a = ba + ca a(b - c) = ab - ac (b - c)a = ba - ca

Properties of Equality

Addition Property of Equality (p. 134) Adding the same number to each side of an equation produces an equivalent equation.	If $x - a = b$, then x - a + a = b + a, or $x = b + a$.
Subtraction Property of Equality (p. 134) Subtracting the same number from each side of an equation produces an equivalent equation.	If $x + a = b$, then x + a - a = b - a, or $x = b - a$.
Multiplication Property of Equality (p. 135) Multiplying each side of an equation by the same nonzero number produces an equivalent equation.	If $\frac{x}{a} = b$ and $a \neq 0$, then $a \cdot \frac{x}{a} = a \cdot b$, or $x = ab$.
Division Property of Equality (p. 135) Dividing each side of an equation by the same nonzero number produces an equivalent equation.	If $ax = b$ and $a \neq 0$, then $\frac{ax}{a} = \frac{b}{a}$, or $x = \frac{b}{a}$.