Other Formulas

Slope (p. 235)	The slope m of a nonvertical line passing through the two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$.
Compound interest (p. 523)	$y=a(1+r)^{t}$ where y is the account balance, a is the initial investment, r is the annual interest rate (in decimal form), and t is the time in years.
Quadratic formula (p. 671)	The real-number solutions of the quadratic equation $a x^{2}+b x+c=0$ are $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ where $a \neq 0$ and $b^{2}-4 a c \geq 0$.
Distance formula (p. 744)	The distance d between any two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$.
Midpoint formula (p. 745)	The midpoint M of the line segment with endpoints $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ is $M\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$.
Theoretical probability (p. 844)	The probability of an event when all the outcomes are equally $\text { likely is } P(\text { event })=\frac{\text { Number of favorable outcomes }}{\text { Total number of outcomes }} .$
Experimental probability (p. 844)	For repeated trials of an experiment, the probability of an event is $P($ event $)=\frac{\text { Number of successes }}{\text { Number of trials }}$.
Permutations (p.852)	The number of permutations of n objects taken r at a time, where $r \leq n$, is given by ${ }_{n} P_{r}=\frac{n!}{(n-r)!}$.
Combinations (p. 856)	The number of combinations of n objects taken r at a time, where $r \leq n$, is given by ${ }_{n} C_{r}=\frac{n!}{(n-r)!\cdot r!}$.
Probability of mutually exclusive or overlapping events (p. 861)	If A and B are mutually exclusive events, then $P(A$ or $B)=P(A)+P(B)$. If A and B are overlapping events, then $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$.
Probability of independent or dependent events (p. 862)	If A and B are independent events, then $P(A$ and $B)=P(A) \cdot P(B)$. If A and B are dependent events, then $P(A$ and $B)=P(A) \cdot P(B$ given $A)$.

