Geometric Formulas

Pythagorean Theorem (p. 737)

In a right triangle, $a^2 + b^2 = c^2$ where *a* and *b* are the lengths of the legs and c is the length of the hypotenuse.

Square (p. 924)

Perimeter Area $A = s^2$ P=4s

Rectangle (p. 924)

Area **Perimeter** $A = \ell w$ $P = 2\ell + 2w$

Parallelogram (p. 924)

Area A = bh

Triangle (p. 924)

Area $A = \frac{1}{2}bh$

Prism (p. 927)

Trapezoid (p. 924)

Area $A = \frac{1}{2}(b_1 + b_2)h$

Circle (p. 926)

Circumference $C = \pi d$ or $C = 2\pi r$

 $A = \pi r^2$

Surface Area Volume S = 2B + PhV = Bh

Cylinder (p. 927)

Surface Area S = 2B + Ch $=2\pi r^2+2\pi rh$

Volume V = Bh $=\pi r^2 h$

Pyramid (p. 927)

Surface Area $S = B + \frac{1}{2}P\ell$

Volume $V = \frac{1}{3}Bh$

Cone (p. 927)

Surface Area Volume

 $S = B + \pi r \ell \qquad V = \frac{1}{3}Bh$ $= \pi r^2 + \pi r \ell \qquad = \frac{1}{3}\pi r^2 h$

Sphere (p. 927)

Surface Area Volume $V = \frac{4}{3}\pi r^3$ $S=4\pi r^2$