Extra Practice

Chapter 1

Evaluate the expression.

1.1 $1 . k+9$ when $k=7$
2. $21-x$ when $x=3$
3. $3.5+t$ when $t=0.9$
4. $y-\frac{3}{8}$ when $y=\frac{7}{12}$
5. $\frac{m}{4}$ when $m=9.6$
6. $1.5 t$ when $t=2.3$
7. z^{3} when $z=\frac{2}{3}$
8. p^{4} when $p=0.2$
1.2
9. $25-7+8$
10. $67-3 \cdot 4$
11. $8^{2} \div 4+12$
12. $9+6 \div 3$
13. $\frac{3^{3}-7}{2}$
14. $\frac{1}{3}(7-5.5)^{2}$
15. $3+4(3+24)$
16. $\frac{3}{5}[27-(2+5)]^{2}$
1.3 Translate the verbal phrase into an expression.
17. $\frac{3}{4}$ of a number m
18. the quotient of a number x and 7
19. the difference of a number y and 3
20. 6 more than 3 times a number n
1.3 Write an expression for the situation.
21. Number of minutes left in a 45 minute class after m minutes have gone by
22. Number of meters in c centimeters

1.4 Write an equation or an inequality.

23. The product of 12 and the difference of a number r and 4 is 72 .
24. The difference of a number q and 18 is greater than 10 and less than 15 .
1.4 Solve the equation using mental math.
25. $d-13=25$
26. $12 z=96$
27. $23-m=7$
28. $\frac{k}{6}=12$
1.5 In Exercises 29 and 30, identify what you know and what you need to find out. You do not need to solve the problem.
29. One day the temperature in Quito, Ecuador, was $20^{\circ} \mathrm{C}$. The temperature in Miami, Florida was $75^{\circ} \mathrm{F}$. Which temperature was higher?
30. On Monday, Katherine walked at a rate of 0.08 mile per minute for 40 minutes. On Tuesday, she walked at a rate of 0.07 mile per minute for 50 minutes. How far did Katherine walk altogether?
1.6 31. Identify the domain and range of the function.

Input	3	4	5	6
Output	9	11	13	15

1.6 32. The domain of the function $y=1.25 x+5$ is $2,4,6$, and 8 . Make a table for the function. Identify the range of the function.

1.7 Graph the function.

33. $y=x+2$; domain: $0,1,2$, and 3
34. $y=1.5 x$; domain: $0,20,40$, and 60
35. $y=3 x-3$; domain: $1,2,3$, and 4
36. $y=\frac{1}{4} x+2$; domain: $0,4,8$, and 12
