Surface Area and Volume

TEKS 8.8.B, 8.8.C

A solid is a three-dimensional figure that encloses part of space. The surface area S of a solid is the sum of the areas of all of its surfaces. The volume V of a solid is the amount of space that the solid occupies. In the formulas for surface area and volume, the number π (pi) is approximately equal to 3.14 or $\frac{22}{7}$.

In this book, the adjectives right and circular will be assumed and therefore will not be used in naming solids.

EXAMPLE Find the surface area of the solid.

a. Sphere

$$
\begin{aligned}
S & =4 \pi r^{2} \\
& =4 \pi\left(6^{2}\right) \\
& =144 \pi \mathrm{in} .^{2} \\
& \approx 144(3.14) \\
& \approx 452.2 \mathrm{in} .^{2}
\end{aligned}
$$

b. Cylinder

$$
\begin{aligned}
S & =2 \pi r^{2}+2 \pi r h \\
& =2 \pi\left(1^{2}\right)+2 \pi(1)(5) \\
& =2 \pi+10 \pi \\
& =12 \pi \mathrm{~m}^{2} \\
& \approx 12(3.14) \approx 37.7 \mathrm{~m}^{2}
\end{aligned}
$$

c. Cone

$$
\begin{aligned}
S & =\pi r^{2}+\pi r \ell \\
& =\pi\left(3^{2}\right)+\pi(3)(5) \\
& =9 \pi+15 \pi \\
& =24 \pi \mathrm{in} . .^{2} \\
& \approx 24(3.14) \approx 75.4 \mathrm{in} .^{2}
\end{aligned}
$$

