EXAMPLE 3 **Use properties of multiplication**

JUSTIFY STEPS

To justify a step, you name the property used. Sometimes a step is a calculation, as when you multiply 0.25 and −4 in Example 3.

Find the product $(-4x) \cdot 0.25$. Justify your steps.

$$(-4x) \cdot 0.25 = 0.25 \cdot (-4x)$$
 Commutative property of multiplication
$$= [0.25 \cdot (-4)]x$$
 Associative property of multiplication
$$= -1 \cdot x$$
 Product of 0.25 and -4 is -1.
$$= -x$$
 Multiplicative property of -1

EXAMPLE 4

TAKS REASONING: Multi-Step Problem

READING

The average rate of change in elevation is the total change in elevation divided by the number of years that have passed.

LAKES In 1900 the elevation of Mono Lake in California was about 6416 feet. From 1900 to 1950, the average rate of change in elevation was about -0.12 foot per year. From 1950 to 2000, the average rate of change was about -0.526 foot per year. Approximate the elevation in 2000.

Solution

STEP 1 Write a verbal model.

STEP 2 Calculate the elevation in 1950. Use the elevation in 1900 as the original elevation. The time span is 1950 - 1900 = 50 years.

New elevation =
$$6416 + (-0.12)(50)$$
 Substitute values.
= $6416 + (-6)$ Multiply -0.12 and 50 .
= 6410 Add 6416 and -6 .

STEP 3 Calculate the elevation in 2000. Use the elevation in 1950 as the original elevation. The time span is 2000 - 1950 = 50 years.

New elevation =
$$6410 + (-0.526)(50)$$
 Substitute values.
= $6410 + (-26.3)$ Multiply -0.526 and 50.
= 6383.7 Add 6410 and -26.3 .

The elevation in 2000 was about 6383.7 feet above sea level.

GUIDED PRACTICE

for Examples 3 and 4

Find the product. Justify your steps.

10.
$$\frac{3}{10}$$
 (5*y*) **11.** $0.8(-x)(-1)$ **12.** $(-y)(-0.5)(-6)$

13. Using the data in Example 4, approximate the elevation of Mono Lake in 1925 and in 1965.