

13.2 Find Probabilities Using Permutations

pp. 851-855

EXAMPLE

You need to enter a 4 digit code in order to enter the building where you work. The digits are 4 different numbers from 1 to 5. You forgot the code and try to guess it. Find the probability that you guess correctly.

STEP 1 Write the number of possible outcomes as the number of permutations of 4 out of the 5 possible digits. This is ${}_5P_4$.

$$_{5}P_{4} = \frac{5!}{(5-4)!} = \frac{5!}{1!} = 5! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 120$$

STEP 2 Find the probability. Because only one of the permutations is the correct code, the probability that you guess the correct code is $\frac{1}{120}$.

EXERCISES

Evaluate the expression.

6.
$$_{7}P_{6}$$

7.
$$_{6}P_{2}$$

8.
$$_{9}P_{5}$$

9.
$${}_{13}P_{10}$$

10. MUSIC You downloaded 6 songs. You randomly choose 4 of these songs to play. Find the probability that you play the first 4 songs you downloaded in the order in which you downloaded them.

13.3 Find Probabilities Using Combinations

pp. 856-859

EXAMPLE

For your government class, you must choose 3 states in the United States to research. You may choose your states from the 6 New England states. How many combinations of states are possible?

The order in which you choose the states is not important. So, to find the number of combinations of 6 states taken 3 at a time, find ${}_6C_3$.

$$_6C_3=rac{6!}{(6-3)!\cdot 3!}$$
 Combinations formula
$$=rac{6\cdot 5\cdot 4\cdot 3!}{3!\cdot (3\cdot 2\cdot 1)}$$
 Expand factorials. Divide out common factor, 3I.

= 20

Simplify.

EXERCISES

on p. 857

on p. 857 for Exs. 11–15

EXAMPLE 2

on p. 852

for Exs. 6-10

Evaluate the expression.

11.
$$_{7}C_{6}$$

12.
$${}_{6}C_{2}$$

13.
$$_{9}C_{5}$$

14.
$$_{13}C_{10}$$

15. TICKETS You win 5 tickets to a concert. In how many ways can you choose 4 friends out of a group of 9 to take with you to the concert?