EXAMPLE 2
on p. 888
for Exs. 8-10

EXAMPLES

1 and 3
on pp. 887, 889
for Exs. 11-13
7. ERROR ANALYSIS Describe and correct the error in creating a box-and-whisker plot of the data $0,2,4,0,6,10,8,12,5$.

BOX-AND-WHISKER PLOT In Exercises 8-10, use the box-and-whisker plot.

8. TAKS REASONING About what percent of the data are greater than 20 ?
(A) 25%
(B) 50%
(C) 75%
(D) 100%
9. TAKS REASONING About what percent of the data are less than 15 ?
(A) 25%
(B) 50%
(C) 75%
(D) 100%
10. ERROR ANALYSIS Describe and correct the error in interpreting the box-and-whisker plot.

About 25% of the data values lie between 11 and 20.

OUTLIERS Make a box-and-whisker plot of the data. Identify any outliers.
11. Hours worked per week: $15,15,10,12,22,10,8,14,18,22,18,15,12,11,10$
12. Prices of MP3 players: $\$ 124, \$ 95, \$ 105, \$ 110, \$ 95, \$ 124, \$ 300, \$ 190, \$ 114$
13. Annual salaries: $\$ 30,000, \$ 35,000, \$ 48,000, \$ 68,500, \$ 32,000, \$ 38,000$
14. CHALLENGE Two data sets have the same mean, the same interquartile range, and the same range. Is it possible for the box-and-whisker plots of such data sets to be different? Justify your answer by creating data sets that fit the situation.

Problem Solving

EXAMPLE 1 on p. 887
for Exs. 15-16
15. SEAWAY The average sailing times to the Atlantic Ocean from several ports on the St. Lawrence Seaway are shown on the map. Make a box-and-whisker plot of the sailing times.

