2.4. Multiply Real Numbers

TEKS
a.1, a.6,
A.4.B; 8.2.B

Before
Now
Why

You added and subtracted real numbers.
You will multiply real numbers.
So you can calculate an elevation, as in Example 4.

Key Vocabulary - multiplicative identity

In the activity on page 87 , you saw that $a \cdot(-1)=-a$ for any integer a. This rule not only lets you write the product of a and -1 as $-a$, but it also lets you write $-a$ as $(-1) a$ and $a(-1)$. Using this rule, you can multiply any two real numbers. Here are two examples:

$$
\begin{aligned}
-2(3) & =-1(2)(3) & (-2)(-3) & =-2(3)(-1) \\
& =-1(6) & & =-6(-1) \\
& =-6 & & =6
\end{aligned}
$$

KEY CONCEPT

The Sign of a Product

Words The product of two real numbers with the same sign is positive.
Examples $3(4)=12 \quad-6(-3)=18$
Words The product of two real numbers with different signs is negative.
Examples $2(-5)=-10$

$$
-7(2)=-14
$$

EXAMPLE 1 Multiply real numbers

MULTIPLY

NEGATIVES

- A product is negative if it has an odd number of negative numbers.
- A product is positive if it has an even number of negative numbers.

Find the product.
a. $-3(6)=-18 \quad$ Different signs; product is negative.
b. $2(-5)(-4)=(-10)(-4) \quad$ Multiply 2 and -5 .

$$
=40 \quad \text { Same signs; product is positive. }
$$

c. $-\frac{1}{2}(-4)(-3)=2(-3) \quad$ Multiply $-\frac{1}{2}$ and -4 .

$$
=-6 \quad \text { Different signs; product is negative. }
$$

Guided Practice for Example 1

Find the product.

1. $-2(-7)$
2. $-0.5(-4)(-9)$
3. $\frac{4}{3}(-3)(7)$
