MEASURES OF DISPERSION A **measure of dispersion** describes the dispersion, or spread, of data. Two such measures are the *range*, which gives the length of the interval containing the data, and the *mean absolute deviation*, which gives the average variation of the data from the mean.

KEY CONCEPT

For Your Notebook

Measures of Dispersion

The **range** of a numerical data set is the difference of the greatest value and the least value.

The **mean absolute deviation** of the data set x_1, x_2, \ldots, x_n is given by:

Mean absolute deviation = $\frac{|x_1 - \overline{x}| + |x_2 - \overline{x}| + \ldots + |x_n - \overline{x}|}{n}$

EXAMPLE 2 Compare measures of dispersion

RUNNING The top 10 finishing times (in seconds) for runners in two men's races are given. The times in a 100 meter dash are in set *A*, and the times in a 200 meter dash are in set *B*. Compare the spread of the data for the two sets using (**a**) the range and (**b**) the mean absolute deviation.

A: 10.62, 10.94, 10.94, 10.98, 11.05, 11.13, 11.15, 11.28, 11.29, 11.32

B: 21.37, 21.40, 22.23, 22.23, 22.34, 22.34, 22.36, 22.60, 22.66, 22.73

Solution

a. A: 11.32 - 10.62 = 0.7

B: 22.73 - 21.37 = 1.36

- The range of set *B* is greater than the range of set *A*. So, the data in *B* cover a wider interval than the data in *A*.
- **b.** The mean of set *A* is 11.07, so the mean absolute deviation is:

$$\frac{|10.62 - 11.07| + |10.94 - 11.07| + \ldots + |11.32 - 11.07|}{10} = 0.164$$

The mean of set *B* is 22.226, so the mean absolute deviation is:

$$\frac{|21.37 - 22.226| + |21.40 - 22.226| + \ldots + |22.73 - 22.226|}{10} = 0.3364$$

The mean absolute deviation of set *B* is greater, so the average variation from the mean is greater for the data in *B* than for the data in *A*.

GUIDED PRACTICE for Example 2

2. RUNNING The top 10 finishing times (in seconds) for runners in a men's 400 meter dash are 46.89, 47.65, 48.15, 49.05, 49.19, 49.50, 49.68, 51.09, 53.31, and 53.68. *Compare* the spread of the data with that of set *A* in Example 2 using (**a**) the range and (**b**) the mean absolute deviation.

REVIEW ABSOLUTE VALUE

For help with absolute value, see p. 66.

REVIEW NEGATIVE

absolute deviation, you will encounter negative

numbers. For help with negative numbers, see

NUMBERS When using the

p. 64.

formula for mean

