EXAMPLE 3 Find the probability of \boldsymbol{A} and B

ANOTHER WAY

For alternative methods for solving the problem in Example 3, turn to page 868 for the Problem Solving Workshop.

BUS SCHEDULE You take a city bus from your neighborhood to a location within walking distance of your school. The express bus arrives at your neighborhood between 7:30 and 7:36. The local bus arrives at your neighborhood between $7: 30$ and $7: 40$. You arrive at the bus stop at $7: 33$. Find the probability that you have missed both the express bus and the local bus.

Solution

The events are independent. The arrival of one bus does not affect the arrival of the other bus.

There are 6 minutes when the express bus can arrive. You are not at the bus stop for 3 of those minutes.
$P\left(\right.$ you miss express bus) $=\frac{3}{6}=\frac{1}{2}$

There are 10 minutes when the local bus can arrive. You are not at the bus stop for 3 of those minutes.
$P($ you miss local bus $)=\frac{3}{10}$

Multiply the probabilities of the two events:
$P($ you miss both buses $)=\frac{1}{2} \cdot \frac{3}{10}=\frac{3}{20}$

- The probability that you miss the express bus and the local bus is $\frac{3}{20}$.

EXAMPLE 4 Find the probability of A and B

PEN COLORS A box contains 3 blue pens and 5 black pens. You choose one pen at random, do not replace it, then choose a second pen at random. What is the probability that both pens are blue?

Solution

Because you do not replace the first pen, the events are dependent. Before you choose a pen, there are 8 pens, and 3 of them are blue. After you choose a blue pen, there are 7 pens left and 2 of them are blue.

$$
\begin{aligned}
P(\text { blue and then blue }) & =\boldsymbol{P}(\text { blue }) \cdot \boldsymbol{P}(\text { blue given blue }) \\
& =\frac{3}{8} \cdot \frac{2}{7}=\frac{6}{56}=\frac{3}{28}
\end{aligned}
$$

Guided Practice for Examples 3 and 4

3. MARBLES A bag contains 4 red, 5 green, and 2 blue marbles. You randomly draw 2 marbles, one at a time. Find the probabililty that both are red if:
a. you replace the first marble.
b. you do not replace the first marble.
