FACTORIAL In Example 1, you evaluated the expression $4 \cdot 3 \cdot 2 \cdot 1$. This expression can be written as 4 ! and is read " 4 factorial." For any positive integer n, the product of the integers from 1 to n is called \boldsymbol{n} factorial and is written as $n!$. The value of 0 ! is defined to be 1 .

$$
n!=n \cdot(n-1) \cdot(n-2) \cdot \ldots \cdot 3 \cdot 2 \cdot 1 \text { and } 0!=1
$$

In Example 1, you also found the permutations of four objects taken two at a time. You can find the number of permutations using the formulas below.

KEY CONCEPT
 For Your Noteboook

Permutations

Formulas

The number of permutations of n objects is given by:

$$
{ }_{n} P_{n}=n!
$$

The number of permutations of n objects taken r at a time, where $r \leq n$, is given by:

$$
{ }_{n} P_{r}=\frac{n!}{(n-r)!}
$$

Examples

The number of permutations of 4 objects is:

$$
{ }_{4} P_{4}=4!=4 \cdot 3 \cdot 2 \cdot 1=24
$$

The number of permutations of 4 objects taken 2 at a time is:

$$
{ }_{4} P_{2}=\frac{4!}{(4-2)!}=\frac{4 \cdot 3 \cdot 2!}{2!}=12
$$

EXAMPLE 2 Use a permutations formula

CD RECORDING Your band has written 12 songs and plans to record 9 of them for a CD. In how many ways can you arrange the songs on the CD?

Solution

To find the number of permutations of 9 songs chosen from 12 , find ${ }_{12} P_{9}$.

$$
\begin{array}{rlrl}
{ }_{12} P_{9} & =\frac{12!}{(12-9)!} & & \text { Permutations formula } \\
& =\frac{12!}{3!} & & \text { Subtract. } \\
& =\frac{12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3!}{3!} & & \text { Expand factorials. } \\
& =79,833,600 & & \text { Divide out common factor, 3!. } \\
& & \text { Multiply. }
\end{array}
$$

There are $79,833,600$ ways to arrange 9 songs out of 12 .

Guided Practice for Example 2

3. WHAT IF? In Example 2, suppose your band has written 15 songs. You will record 9 of them for a CD. In how many ways can you arrange the songs on the CD?
