13.2
 8.11.B

Before
Now
Why?

You used the counting principle.
You will use the formula for the number of permutations.
So you can find the number of possible arrangements, as in Ex. 38.

Key Vocabulary - permutation

- \boldsymbol{n} factorial

A permutation is an arrangement of objects in which order is important. For instance, the 6 possible permutations of the letters A, B, and C are shown.
ABC ACB
BAC BCA
CAB
CBA

EXAMPLE 1 Count permutations

Consider the number of permutations of the letters in the word JULY.
a. In how many ways can you arrange all of the letters?
b. In how many ways can you arrange 2 of the letters?

Solution

a. Use the counting principle to find the number of permutations of the letters in the word JULY.

Number of permutations	$=$	Choices for 1st letter		Choices for 2nd letter		Choices for 3rd letter		Choices for 4th letter
		\checkmark		\checkmark		\checkmark		\checkmark
	=	4	-	3	-	2	-	1

- There are 24 ways you can arrange all of the letters in the word JULY.
b. When arranging 2 letters of the word JULY, you have 4 choices for the first letter and 3 choices for the second letter.

$$
\begin{aligned}
\begin{array}{l}
\text { Number of } \\
\text { permutations }
\end{array} & =\begin{array}{l}
\text { Choices for } \\
1 \text { st letter }
\end{array} \\
& =4 \cdot 3 \\
& =12
\end{aligned}
$$

- There are 12 ways you can arrange 2 of the letters in the word JULY.

Guided Practice for Example 1

1. In how many ways can you arrange the letters in the word MOUSE?
2. In how many ways can you arrange 3 of the letters in the word ORANGE?
