SKILL PRACTICE

EXAMPLE 1

on p. 843
for Exc. 3-6

EXAMPLE 2
on p. 844
for Exc. 7-8

EXAMPLE 3
on p. 845
for Exc. 9-10

EXAMPLE 4
on p. 845
for Exc. 11-14

1. VOCABULARY Copy and complete: A number that describes the likelihood of an event is the \qquad of the event.
2. WRITING Explain how the probability of an event differs from the odds in favor of the event when all outcomes are equally likely.

SAMPLE SPACE In Exercises 3-6, find the number of possible outcomes in the sample space. Then list the possible outcomes.
3. A bag contains 4 red cards numbered $1-4,4$ white cards numbered $1-4$, and 4 black cards numbered $1-4$. You choose a card at random.
4. You toss two coins.
5. You roll a number cube and toss three coins.
6. You roll two number cubes.

PROBABILITY AND ODDS In Exercises 7-13, refer to the spinner shown. The spinner is divided into sections with the same area.
7. What is the probability that the spinner stops on a multiple of 3 ?
8. ERROR ANALYSIS Describe and correct the error in finding the probability of stopping on a multiple of 9 .

$$
\frac{\text { Number of favorable outcomes }}{\text { Total number of outcomes }}=\frac{2}{10}=\frac{1}{5}
$$

9. You spin the spinner 30 times. It stops on 12 three times. What is the experimental probability of stopping on 12 ?
10. You spin the spinner 10 times. It stops on an even number 6 times. What is the experimental probability of stopping on an even number?
11. What are the odds in favor of stopping on a multiple of 4 ?
12. What are the odds against stopping on a number less than 12 ?
13. ERROR ANALYSIS Describe and correct the error in finding the odds in favor of stopping on a multiple of 3.

Odds in favor of a multiple of $3=\frac{\text { Number of favorable outcomes }}{\text { Total number of outcomes }}=\frac{9}{10}$ or $9: 10$

14. TAKS REASONING The odds in favor of an event are $5: 8$. What are the odds against the event?
(A) $3: 8$
(B) $8: 3$
(C) $5: 8$
(D) $8: 5$
15. TAKS REASONING Describe a real-world event whose probability is 0 . Describe another real-world event whose probability is 1 .

