REVIEWING PROPORTIONAL CHANGE PROBLEMS INVOLVING SOLIDS

Some math problems require knowledge of how changing the dimensions of a three-dimensional solid proportionally affects the surface area and volume of the solid. Two solids with equal ratios of corresponding linear measures, such as heights or radii, are called similar solids. This common ratio is called the scale factor of one solid to the other solid. If two solids are similar with a scale factor of $a: b$, then the following is true:

- the ratio of the surface areas of the solids is $a^{2}: b^{2}$.
- the ratio of the volumes of the solids is $a^{3}: b^{3}$.

EXAMPLE

Solids A and B are similar rectangular prisms with a scale factor of $1: 3$. Find the volume of prism B given that the volume of prism A is 6 cubic feet.

Solution

STEP 1 Write the ratio of the volumes of the prisms. Because the scale factor of prism A to prism B is $1: 3$, the ratio of the volumes of the prisms is $1^{3}: 3^{3}$, or $1: 27$.
STEP 2 Calculate the volume V of prism B by setting up and solving a proportion.
$\frac{\text { Volume of } A}{\text { Volume of } B}=\frac{1}{27} \quad$ Write proportion.

$$
\begin{aligned}
\frac{6}{V} & =\frac{1}{27} & & \text { Substitute } 6 \text { for the volume of A. } \\
6 \cdot 27 & =1 \cdot V & & \text { Cross products property } \\
162 & =V & & \text { Simplify. }
\end{aligned}
$$

- The volume of prism B is 162 cubic feet.

CHECK Check your answer by calculating the ratio of the volumes using 162 for the volume of prism B.
$\frac{\text { Volume of } A}{\text { Volume of } B}=\frac{6}{162}=\frac{1}{27}=\frac{1^{3}}{3^{3}}$

