Lessons 12.5-12.7

MULTIPLE CHOICE

1. Revenue For the period 1991-2002, the average total revenue T (in dollars per admission) that a U.S. movie theater earned and the average revenue C (in dollars per admission) that a U.S. movie theater earned from concessions can be modeled by

$$
T=\frac{0.018 x^{2}+5.4}{1-0.0011 x^{2}} \quad \text { and } \quad C=\frac{0.013 x^{2}+1.1}{0.0011 x^{2}+1}
$$

where x is the number of years since 1991. Which equation gives the percent p (in decimal form) of the average total revenue per admission that came from concessions as a function of x ? TEKS A.4.A
(A) $p=\frac{\left(1-0.0011 x^{2}\right)\left(0.013 x^{2}+1.1\right)}{\left(0.018 x^{2}+5.4\right)\left(0.0011 x^{2}+1\right)}$
(B) $p=\frac{\left(0.018 x^{2}+5.4\right)\left(0.0011 x^{2}+1\right)}{\left(1-0.0011 x^{2}\right)\left(0.013 x^{2}+1.1\right)}$
(C) $p=\frac{\left(0.018 x^{2}+5.4\right)\left(0.013 x^{2}+1.1\right)}{\left(1-0.0011 x^{2}\right)\left(0.0011 x^{2}+1\right)}$
(D) $p=\frac{\left(1-0.0011 x^{2}\right)\left(0.0011 x^{2}+1\right)}{\left(0.018 x^{2}+5.4\right)\left(0.013 x^{2}+1.1\right)}$
2. ROWERS A rower travels 5 miles upstream (against the current) and 5 miles downstream (with the current). The speed of the current is 1 mile per hour. Which equation gives the total travel time t (in hours) as a function of the rower's average speed r (in miles per hour) in still water? TEKS $a .4$

(F) $t=\frac{10 r}{r^{2}-1}$
(G) $t=\frac{2 r}{5}$
(H) $t=\frac{25}{r^{2}-1}$
(J) $t=\frac{10}{r}$
3. COLLEGE DEGREES The number D (in thousands) of all college degrees earned and the number M (in thousands) of master's degrees earned in the United States during the period 1984-2001 can be modeled by

$$
D=\frac{17 x^{2}+1800}{1+0.0062 x^{2}} \text { and } \quad M=\frac{2.5 x^{2}+280}{1+0.0040 x^{2}}
$$

where x is the number of years since 1984 . Which equation gives the number C of college degrees that were not master's degrees as a function of x ? TEKS A.4.A
(A) $C=\frac{17 x^{2}+1800+2.5 x^{2}+280}{\left(1+0.0062 x^{2}\right)\left(1+0.0040 x^{2}\right)}$
(B) $C=\frac{17 x^{2}+1800}{1+0.0062 x^{2}}-\frac{2.5 x^{2}+280}{1+0.0040 x^{2}}$
(C) $C=\frac{17 x^{2}+1800}{1+0.0062 x^{2}}+\frac{2.5 x^{2}+280}{1+0.0040 x^{2}}$
(D) $C=\frac{\left(17 x^{2}+1800\right)\left(2.5 x^{2}+280\right)}{\left(1+0.0062 x^{2}\right)\left(1+0.0040 x^{2}\right)}$

GRIDDED ANSWER (1) (3) (4) (5) (8) (8) (9)

4. WEIGHT CAPACITY The diagram below shows the distance between the first axle and the last axle for a group of consecutive axles on a truck.

The maximum weight W (to the nearest 500 pounds) that a truck on a highway can carry on a group of consecutive axles is given by the formula

$$
W=500\left(\frac{d}{n-1}+12 n+36\right)
$$

where d is the distance between the first axle and the last axle of the group and n is the number of axles in the group. How many thousands of pounds can the truck carry on axles 2-5? TEKS A.4.A

