EXAMPLE 2 Multiply by the LCD

Solve $\frac{x}{x-2}+\frac{1}{5}=\frac{2}{x-2}$. Check your solution.

$$
\begin{array}{rlrl}
\frac{x}{x-2}+\frac{1}{5} & =\frac{2}{x-2} & & \text { Write original equation. } \\
\frac{x}{x-2} \cdot 5(x-2)+\frac{1}{5} \cdot 5(x-2) & =\frac{2}{x-2} \cdot 5(x-2) & & \text { Multiply by LCD, } 5(x-2) . \\
\frac{x \cdot 5(x-2)}{x-2}+\frac{5(x-2)}{5} & =\frac{2 \cdot 5(x-2)}{x-2} & & \text { Multiply and divide out } \\
5 x+x-2 & =10 & & \text { common factors. } \\
6 x-2 & =10 & & \text { Simplify. } \\
6 x & =12 & & \text { Combine like terms. } \\
x & =2 & & \text { Add } 2 \text { to each side. } \\
\text { Divide each side by } 6 .
\end{array}
$$

AVOID ERRORS
Be sure to identify the excluded values for the rational expressions in the original equation.

The solution appears to be 2 , but the expressions $\frac{x}{x-2}$ and $\frac{2}{x-2}$ are undefined when $x=2$. So, 2 is an extraneous solution.

- There is no solution.

EXAMPLE 3 Factor to find the LCD

Solve $\frac{3}{x-7}+1=\frac{8}{x^{2}-9 x+14}$. Check your solution.

Solution

Write each denominator in factored form. The LCD is $(x-2)(x-7)$.

$$
\begin{aligned}
\frac{3}{x-7}+1 & =\frac{8}{(x-2)(x-7)} \\
\frac{3}{x-7} \cdot(x-2)(x-7)+1 \cdot(x-2)(x-7) & =\frac{8}{(x-2)(x-7)} \cdot(x-2)(x-7) \\
\frac{3(x-2)(x-7)}{x-7}+(x-2)(x-7) & =\frac{8(x-2)(x-7)}{(x-2)(x-7)} \\
3(x-2)+\left(x^{2}-9 x+14\right) & =8 \\
x^{2}-6 x+8 & =8 \\
x^{2}-6 x & =0 \\
x(x-6) & =0 \\
x=0 \text { or } x-6 & =0 \\
x=0 \text { or } \quad x & =6
\end{aligned}
$$

- The solutions are 0 and 6 .

CHECK

$$
\begin{array}{ccc}
\text { If } \boldsymbol{x}=\mathbf{0}: & \text { If } \boldsymbol{x}=\mathbf{6}: \\
\frac{3}{0-7}+1 \stackrel{?}{\stackrel{3}{2}} \frac{8}{0^{2}-9 \cdot 0+14} & \frac{3}{6-7}+1 \stackrel{?}{=} \frac{8}{6^{2}-9 \cdot 6+14} \\
\frac{4}{7}=\frac{4}{7} \checkmark & -2=-2 \checkmark
\end{array}
$$

