EXAMPLE 6

BOAT TRAVEL A boat travels 24 kilometers upstream (against the current) and 24 kilometers downstream (with the current) as shown in the diagram. Write an equation that gives the total travel time t (in hours) as a function of the boat's average speed r (in kilometers per hour) in still water. Find the total travel time if the boat's average speed in still water is 10 kilometers per hour.

Solution

STEP 1 Write a verbal model. Then write an equation.

STEP 2 Find the sum of the expressions on the right side of the equation.

$$
\begin{aligned}
t & =\frac{24}{r-2}+\frac{24}{r+2} & & \text { Write equation. } \\
& =\frac{24(r+2)}{(r-2)(r+2)}+\frac{24(r-2)}{(r+2)(r-2)} & & \begin{array}{l}
\text { Rewrite fractions using } \\
\text { LCD, }(r-2)(r+2) .
\end{array} \\
& =\frac{24(r+2)+24(r-2)}{(r-2)(r+2)} & & \text { Add fractions. } \\
& =\frac{48 r}{(r-2)(r+2)} & & \text { Simplify. }
\end{aligned}
$$

STEP 3 Calculate the value of t when $r=10$.

$$
t=\frac{48(10)}{(10-2)(10+2)}=\frac{480}{(8)(12)}=\frac{480}{96}=5
$$

- The total travel time is 5 hours.

GUIDED PRACTICE for Example 6

9. WHAT IF? In Example 6, suppose the speed of the current is 3 kilometers per hour. Find the total travel time.
