Extension

Use ariter Lesson 12.5

Key Vocabulary - complex fraction

Simplify Complex Fractions

TEKS A.4.A
GoAL Simplify complex fractions.
A complex fraction is a fraction that contains a fraction in its numerator, denominator, or both. To simplify a complex fraction, divide its numerator by its denominator.

READING

The widest fraction bar separates the numerator of a complex fraction from the denominator.

KEY CONCEPT
For Your Notebook

Simplifying a Complex Fraction

Let a, b, c, and d be polynomials where $b \neq 0, c \neq 0$, and $d \neq 0$.
Algebra $\frac{\frac{a}{b}}{\frac{c}{d}}=\frac{a}{b} \div \frac{c}{d}=\frac{a}{b} \cdot \frac{d}{c}$
Example $\frac{\frac{x}{2}}{\frac{x}{3}}=\frac{x}{2} \div \frac{x}{3}=\frac{x}{2} \cdot \frac{3}{x}=\frac{3 x}{2 x}=\frac{3}{2}$

EXAMPLE 1 Simplify a complex fraction

Simplify the complex fraction.
a. $\frac{\frac{3 x}{2}}{-6 x^{3}}=\frac{3 x}{2} \div\left(-6 x^{3}\right) \quad$ Write fraction as quotient.
$=\frac{3 x}{2} \cdot \frac{1}{-6 x^{3}} \quad$ Multiply by multiplicative inverse.
$=\frac{3 x}{-12 x^{3}} \quad$ Multiply numerators and denominators.

$$
=-\frac{1}{4 x^{2}} \quad \text { Simplify } .
$$

b. $\frac{x^{2}-1}{\frac{x+1}{x-1}}=\left(x^{2}-1\right) \div \frac{x+1}{x-1} \quad$ Write fraction as quotient.

$$
=\left(x^{2}-1\right) \cdot \frac{x-1}{x+1} \quad \text { Multiply by multiplicative inverse. }
$$

$$
=\frac{\left(x^{2}-1\right)(x-1)}{x+1} \quad \text { Multiply numerators and denominators. }
$$

$$
=\frac{(x+1)(x-1)(x-1)}{x+1} \quad \text { Factor and divide out common factor. }
$$

$$
=(x-1)^{2} \quad \text { Simplify }
$$

