TRANSLATING PHRASES Translate the verbal phrase into a product or quotient of rational expressions. Then find the product or quotient.
22. The product of $x+3$ and the ratio of $x+5$ to $x^{2}-9$
23. The product of $8 x^{2}$ and the multiplicative inverse of $2 x^{3}$
24. The quotient of $x^{2}+3 x-18$ and the ratio of $x+6$ to 2
25. The quotient of the multiplicative inverse of $x^{2}-3 x-4$ and twice the multiplicative inverse of $x^{2}-1$
26. TAKS REASONING What is the quotient $\frac{x^{2}-1}{-(x+1)} \div(x-1)$?
(A) -1
(B) 0
(C) 1
(D) $x^{2}-1$

TAKS REASONING Let a, b, c, and d be different polynomials. Find two rational expressions $\frac{a}{b}$ and $\frac{c}{d}$ that satisfy the given conditions.
27. The product of the rational expressions is $\frac{x-3}{x+2}$, and the excluded values are $-2,-1,4$, and 5 .
28. The quotient of the rational expressions is $\frac{x-6}{x+4}$, and the excluded values are $-4,-2,3$, and 6 .
(2) GEOMETRY Write an expression for the area of the figure. Find a value of \boldsymbol{x} less than 5 for which the given dimensions and the area are positive.
29. Rectangle

30. Triangle

CHALLENGE Let \boldsymbol{a} be a polynomial in the given equation. Find a.
31. $\frac{a}{x+2} \cdot \frac{3 x^{2}+5 x-2}{x-4}=6 x^{2}+7 x-3$
32. $\frac{8 x^{2}-2 x-3}{x-5} \div \frac{2 x+1}{a}=12 x^{2}-x-6$

PROBLEM SOLVING

EXAMPLE 6
on p. 805
for Exs. 33-35
33. VEHICLES The total distance M (in billions of miles) traveled by all motor vehicles and the distance T (in billions of miles) traveled by trucks in the United States during the period 1980-2002 can be modeled by

$$
M=1500+63 x \quad \text { and } \quad T=\frac{100+2.2 x}{1-0.014 x}
$$

where x is the number of years since 1980 . Write a model that gives the percent p (in decimal form) of the total motor vehicle distance that was traveled by trucks as a function of x. Then approximate the percent traveled by trucks in 2002.
TEXAS @HomeTutor for problem solving help at classzone.com

