ADVERTISING The amount A (in millions of dollars) spent on all advertising and the amount T (in millions of dollars) spent on television advertising in the United States during the period 1970-2003 can be modeled by

$$
A=\frac{13,000+3700 x}{1-0.015 x} \quad \text { and } \quad T=\frac{1800+860 x}{1-0.016 x}
$$

where x is the number of years since 1970. Write a model that gives the percent p (in decimal form) of the amount spent on all advertising that was spent on television advertising. Then approximate the percent spent on television advertising in 2003.

Solution

STEP 1 Write a verbal model. Then write an equation.

Percent spent on television advertising	$=$Amount spent on television advertising	\div	Amount spent on all advertising	
\boldsymbol{p}	$=$	\boldsymbol{T}	\div	\boldsymbol{A}

STEP 2 Find the quotient.

$$
\begin{aligned}
p & =T \div A & & \text { Write equation. } \\
& =\frac{1800+860 x}{1-0.016 x} \div \frac{13,000+3700 x}{1-0.015 x} & & \text { Substitute for } T \text { and for } A . \\
& =\frac{1800+860 x}{1-0.016 x} \cdot \frac{1-0.015 x}{13,000+3700 x} & & \text { Multiply by multiplicative inverse. } \\
& =\frac{(1800+860 x)(1-0.015 x)}{(1-0.016 x)(13,000+3700 x)} & & \begin{array}{l}
\text { Multiply numerators } \\
\text { and denominators. }
\end{array} \\
& =\frac{2 \theta(90+43 x)(1-0.015 x)}{(1-0.016 x)(2 \theta)(650+185 x)} & & \begin{array}{l}
\text { Factor and divide out } \\
\text { common factor. }
\end{array} \\
& =\frac{(90+43 x)(1-0.015 x)}{(1-0.016 x)(650+185 x)} & & \text { Simplify. }
\end{aligned}
$$

STEP 3 Approximate the percent spent on television advertising in 2003. Because $2003-1970=33, x=33$. Substitute 33 for x in the model and use a calculator to evaluate.

$$
p=\frac{(90+43 \cdot 33)(1-0.015 \cdot 33)}{(1-0.016 \cdot 33)(650+185 \cdot 33)} \approx 0.239
$$

- About 24% of the amount spent on all advertising was spent on television advertising in 2003.

Guided Practice for Example 6

7. In Example 6, find the values of T and of A separately when $x=33$. Then divide the value of T by the value of A. Compare your answer with the answer in Step 3 above.
