DIVIDING RATIONAL EXPRESSIONS To divide by a rational expression, multiply by its multiplicative inverse.

EXAMPLE 4 Divide rational expressions involving polynomials

Find the quotient $\frac{7 x^{2}-7 x}{x^{2}+2 x-3} \div \frac{x+1}{x^{2}-7 x-8}$.

$$
\frac{7 x^{2}-7 x}{x^{2}+2 x-3} \div \frac{x+1}{x^{2}-7 x-8}
$$

REVIEW INVERSES

For help with finding the multiplicative inverse of a number, see p. 103.

$$
\begin{aligned}
& =\frac{7 x^{2}-7 x}{x^{2}+2 x-3} \cdot \frac{x^{2}-7 x-8}{x+1} \quad \text { Multiply by multiplicative inverse. } \\
& =\frac{\left(7 x^{2}-7 x\right)\left(x^{2}-7 x-8\right)}{\left(x^{2}+2 x-3\right)(x+1)} \quad \text { Multiply numerators and denominators. } \\
& =\frac{7 x(x-1)(x-8)(x+1)}{(x+3)(x-1)(x+1)} \quad \text { Factor and divide out common factors. } \\
& =\frac{7 x(x-8)}{x+3} \quad \text { Simplify. }
\end{aligned}
$$

DIVIDING BY A POLYNOMIAL When you divide a rational expression by a polynomial, first write the polynomial as a fraction with a denominator of 1. Then multiply by the multiplicative inverse of the polynomial.

EXAMPLE 5 Divide a rational expression by a polynomial

Find the quotient $\frac{2 x^{2}+16 x+24}{3 x^{2}} \div(x+6)$.

$$
\begin{array}{rlrl}
\frac{2 x^{2}+16 x+24}{3 x^{2}} \div(x+6) & & \\
& =\frac{2 x^{2}+16 x+24}{3 x^{2}} \div \frac{x+6}{1} & & \text { Rewrite polynomial as fraction. } \\
& =\frac{2 x^{2}+16 x+24}{3 x^{2}} \cdot \frac{1}{x+6} & & \text { Multiply by multiplicative inverse. } \\
& =\frac{2 x^{2}+16 x+24}{3 x^{2}(x+6)} & & \text { Multiply numerators and denominators. } \\
& =\frac{2(x+2)(x+6)}{3 x^{2}(x+6)} & & \text { Factor and divide out common factor. } \\
& =\frac{2(x+2)}{3 x^{2}} & & \text { Simplify. }
\end{array}
$$

AnimatedAlgebra at classzone.com

Guided Practice for Examples 4 and 5

Find the quotient.
5. $\frac{m^{2}-4}{2 m^{2}+4 m} \div \frac{6 m-3 m^{2}}{4 m+44}$
6. $\frac{n^{2}-6 n+9}{12 n} \div(n-3)$

