EXAMPLE 2 Multiply rational expressions involving polynomials

Find the product $\frac{3 x^{2}+3 x}{4 x^{2}-24 x+36} \cdot \frac{x^{2}-4 x+3}{x^{2}-x}$.

$$
\begin{array}{rlr}
\frac{3 x^{2}+3 x}{4 x^{2}-24 x+36} \cdot \frac{x^{2}-4 x+3}{x^{2}-x} & \\
& =\frac{\left(3 x^{2}+3 x\right)\left(x^{2}-4 x+3\right)}{\left(4 x^{2}-24 x+36\right)\left(x^{2}-x\right)} & \text { Multiply numerators and denominators. } \\
& =\frac{3 x(x+1)(x-3)(x-1)}{4 x(x-3)(x-3)(x-1)} & \text { Factor and divide out common factors. } \\
=\frac{3(x+1)}{4(x-3)} & \text { Simplify. }
\end{array}
$$

CHECK Check your simplification using a graphing calculator.
Graph $y_{1}=\frac{3 x^{2}+3 x}{4 x^{2}-24 x+36} \cdot \frac{x^{2}-4 x+3}{x^{2}-x}$
and $y_{2}=\frac{3(x+1)}{4(x-3)}$.
The graphs coincide. So, the expressions are
 equivalent for all values of x other than the excluded values (0,1 , and 3).

MULTIPLYING BY A POLYNOMIAL When you multiply a rational expression by a polynomial, first write the polynomial as a fraction with a denominator of 1 .

EXAMPLE 3 Multiply a rational expression by a polynomial

Find the product $\frac{5 x}{x^{2}+5 x+6} \cdot(x+3)$.

$$
\begin{array}{rlrl}
\frac{5 x}{x^{2}}+ & 5 x+6 & (x+3) & \\
& =\frac{5 x}{x^{2}+5 x+6} \cdot \frac{x+3}{1} & & \text { Rewrite polynomial as a fraction. } \\
& =\frac{5 x(x+3)}{x^{2}+5 x+6} & & \text { Multiply numerators and denominators. } \\
& =\frac{5 x(x+3)}{(x+2)(x+3)} & & \text { Factor and divide out common factor. } \\
& =\frac{5 x}{x+2} & \text { Simplify. }
\end{array}
$$

GUIDED PRACTICE for Examples 2 and 3

Find the product.

3. $\frac{x^{2}+x-2}{x^{2}+2 x} \cdot \frac{2 x^{2}+2 x}{5 x^{2}-15 x+10}$
4. $\frac{2 w^{2}}{w^{2}-7 w+12} \cdot(w-4)$
