45. TAKS REASONING The revenue R (in millions of dollars) from sales of printed music in the United States during the period 1988-2002 can be modeled by

$$
R=\frac{300+20 x}{1+0.008 x}
$$

where x is the number of years since 1988 .
a. Model and Calculate Rewrite the model so that it has only
 whole number coefficients. Then simplify the model and approximate the revenue from sales of printed music in 2002.
b. Graph Graph the model. Describe how revenue changed during the period.
c. Decide Can you use the model to conclude that the number of copies of printed music sold increased over time? Explain.
46. Challenge The average annual expenses E (in dollars) of a middle income family and the average annual amount T (in dollars) spent on telephone service during the period 1992-2001 can be modeled by

$$
E=1240 x+24,800 \quad \text { and } \quad T=31 x+620
$$

where x is the number of years since 1992. Write and simplify a model to show that the average annual amount spent on telephone service was 2.5% of the average annual expenses during the period.

MIXED REVIEW FOR TAKS

TAKS PRACTICE at classzone.com

REVIEW
Lesson 8.2;
TAKS Workbook

REVIEW

 Lesson 11.4; TAKS Workbook47. TAKS PRACTICE The area of a rectangle is $42 s^{6} t^{4}$ square units. If the width of the rectangle is $14 s^{2} t$ units, how many units long is the rectangle? ($s \neq 0$ and $t \neq 0$) TAKS Obj. 5
(A) $3 s^{3} t^{2}$
(B) $3 s^{3} t^{3}$
(C) $3 s^{4} t^{2}$
(D) $3 s^{4} t^{3}$
48. TAKS PRACTICE A school has a rectangular courtyard that is 32 feet by 24 feet. The school builds a walkway along a diagonal of the rectangle. To the nearest foot, how long is the walkway? TAKS Obj. 8
(F) 28 ft
(G) 35 ft
(H) 40 ft
(J) 56 ft

QUIZ for Lessons 12.3-12.4

Divide. (p. 784)

1. $\left(y^{2}-5 y+6\right) \div(y-3)$
2. $\left(x^{2}+3 x-28\right) \div(x-6)$

Graph the function. (p. 784)

3. $y=\frac{x+3}{x-4}$
4. $y=\frac{2 x-1}{x+3}$

Simplify the rational expression, if possible. State the excluded values. (p. 794)
5. $\frac{w+10}{w^{2}-100}$
6. $\frac{250 x^{3}}{14 x}$
7. $\frac{y+7}{y-7}$
8. $\frac{z^{2}-4 z-45}{3 z^{2}+25 z+50}$

