EXAMPLE 3 Simplify an expression by dividing out binomials

Simplify $\frac{x^{2}-3 x-10}{x^{2}+6 x+8}$. State the excluded values.

$$
\begin{aligned}
\frac{x^{2}-3 x-10}{x^{2}+6 x+8} & =\frac{(x-5)(x+2)}{(x+4)(x+2)} & & \text { Factor numerator and denominator. } \\
& =\frac{(x-5)(x+2)}{(x+4)(x+2)} & & \text { Divide out common factor. } \\
& =\frac{x-5}{x+4} & & \text { Simplify. }
\end{aligned}
$$

- The excluded values are -4 and -2 .

CHECK In the graphing calculator activity on page 560, you saw how to use a graph to check a sum or difference of polynomials.
Check your simplification using a graphing calculator.

Graph $y_{1}=\frac{x^{2}-3 x-10}{x^{2}+6 x+8}$ and $y_{2}=\frac{x-5}{x+4}$.
The graphs coincide. So, the expressions are equivalent for all values of x other than the excluded values (-4 and -2).

OPPOSITES When simplifying a rational expression, look for factors that are opposites of each other. For example, $x-1$ and $1-x$ are opposites, because $x-1=-(1-x)$.

EXAMPLE 4 Recognize opposites

Simplify $\frac{x^{2}-7 x+12}{16-x^{2}}$. State the excluded values.

$$
\begin{aligned}
\frac{x^{2}-7 x+12}{16-x^{2}} & =\frac{(x-3)(x-4)}{(4-x)(4+x)} & & \text { Factor numerator and denominator. } \\
& =\frac{(x-3)(x-4)}{-(x-4)(4+x)} & & \text { Rewrite } 4-x \text { as }-(x-4) . \\
& =\frac{(x-3)(x-4)}{-(x-4)(4+x)} & & \text { Divide out common factor. } \\
& =\frac{x-3}{-(4+x)}=-\frac{x-3}{x+4} & & \text { Simplify. }
\end{aligned}
$$

The excluded values are -4 and 4 .

Guided Practice for Examples 3 and 4

Simplify the rational expression. State the excluded values.
9. $\frac{x^{2}+3 x+2}{x^{2}+7 x+10}$
10. $\frac{y^{2}-64}{y^{2}-16 y+64}$
11. $\frac{5+4 z-z^{2}}{z^{2}-3 z-10}$

