12.3 Divide Polynomials
 TEKS A.1.C, A.1.D

Before You multiplied polynomials.
Now
You will divide polynomials.
Why?
So you can describe an average cost, as in Ex. 43.

Key Vocabulary

- monomial, p. 554
- polynomial, p. 554
- binomial, $p .555$
- rational function, p. 775

Just as you can find the product of two polynomials, you can divide the product by one of the polynomials to obtain the other polynomial. For example, $x^{2}+5 x+6=(x+2)(x+3)$ is equivalent to $\frac{x^{2}+5 x+6}{x+2}=x+3$.

EXAMPLE 1 Divide a polynomial by a monomial

Divide $4 x^{3}+8 x^{2}+10 x$ by $2 x$.

Solution

Method 1: Write the division as a fraction.

$$
\begin{aligned}
\left(4 x^{3}+8 x^{2}+10 x\right) \div 2 x & =\frac{4 x^{3}+8 x^{2}+10 x}{2 x} & & \text { Write as fraction. } \\
& =\frac{4 x^{3}}{2 x}+\frac{8 x^{2}}{2 x}+\frac{10 x}{2 x} & & \text { Divide each term by } 2 \mathbf{x} . \\
& =2 x^{2}+4 x+5 & & \text { Simplify. }
\end{aligned}
$$

Method 2: Use long division.

- $\left(4 x^{3}+8 x^{2}+10 x\right) \div 2 x=2 x^{2}+4 x+5$

CHECK

$$
\begin{aligned}
2 x\left(2 x^{2}+4 x+5\right) & \stackrel{?}{=} 4 x^{3}+8 x^{2}+10 x \\
2 x\left(2 x^{2}\right)+2 x(4 x)+2 x(5) & \stackrel{?}{=} 4 x^{3}+8 x^{2}+10 x \\
4 x^{3}+8 x^{2}+10 x & =4 x^{3}+8 x^{2}+10 x
\end{aligned}
$$

Guided Practice for Example 1

Divide.

1. $\left(6 x^{3}+3 x^{2}-12 x\right) \div 3 x$
2. $\left(12 y^{4}-16 y^{3}+20 y^{2}\right) \div 4 y$
