GRAPHING RATIONAL FUNCTIONS You can graph a rational function of the form $y=\frac{a}{x-h}+k(a \neq 0)$ by using the values of a, k, and h.

KEY CONCEPT

For Your Notebook

Graph of $\boldsymbol{y}=\frac{\boldsymbol{a}}{\boldsymbol{x}-\boldsymbol{h}}+\boldsymbol{k}$
The graph of $y=\frac{a}{x-h}+k$ is a hyperbola that has the following characteristics:

- If $|a|>1$, the graph is a vertical stretch of the graph of $y=\frac{1}{x}$. If $0<|a|<1$, the graph is a vertical shrink of the graph of
 $y=\frac{1}{x}$. If $a<0$, the graph is a reflection in the x-axis of the graph of $y=\frac{1}{x}$.
- The horizontal asymptote is $y=k$. The vertical asymptote is $x=h$.

The domain of the function is all real numbers except $x=h$. The range is all real numbers except $y=k$.

AVOID ERRORS

The asymptotes are used to help you draw a hyperbola. They are not part of the hyperbola.

EXAMPLE 4 Graph $y=\frac{a}{x-h}+k$

Graph $y=\frac{2}{x+1}-3$.

Solution

STEP 1 Identify the asymptotes of the graph. The vertical asymptote is $x=-1$. The horizontal asymptote is $y=-3$.

STEP 2 Plot several points on each side of the vertical asymptote.

STEP 3 Graph two branches that pass through the plotted points and approach the asymptotes.

[^0]
Guided Practice for Example 4

5. Graph $y=\frac{4}{x-5}+6$.
6. For which function is the domain all real numbers except -3 and the range all real numbers except 7 ?
(A) $y=\frac{2}{x-3}+7$
(B) $y=\frac{2}{x-3}-7$
(C) $y=\frac{2}{x+3}+7$
(D) $y=\frac{2}{x+3}-7$

[^0]: AnimatedAlgebra at classzone.com

