EXAMPLE 2 Graph $y = \frac{1}{x} + k$

Graph $y = \frac{1}{x} + 3$ and identify its domain and range. Compare the graph

with the graph of $y = \frac{1}{x}$.

Solution

Graph the function using a table of values.

The domain is all real numbers except 0. The range is all real numbers except 3.

The graph of $y = \frac{1}{r} + 3$ is a

vertical translation (of 3 units

up) of the graph of $y = \frac{1}{x}$.

EXAMPLE 3 Graph $y = \frac{1}{x - h}$

Graph $y = \frac{1}{x-2}$ and identify its domain and range. Compare the graph

with the graph of $y = \frac{1}{x}$.

Solution

Graph the function using a table of values.

The domain is all real numbers except 2. The range is all real numbers except 0.

The graph of $y = \frac{1}{x-2}$ is a horizontal translation (of 2 units to the right) of the

graph of $y = \frac{1}{x}$.

x	У
0	-0.5
1	-1
1.5	-2
2	undefined
2.5	2
3	1
4	0.5

GUIDED PRACTICE for Examples 1, 2, and 3

Graph the function and identify its domain and range. *Compare* the graph with the graph of $y = \frac{1}{r}$.

1.
$$y = \frac{-4}{x}$$

2. $y = \frac{1}{x} - 4$
3. $y = \frac{1}{x+5}$
4. *Describe* how the graph of $y = \frac{1}{x+3}$ is related to the graph of $y = \frac{1}{x}$