12.2 Graph Rational Functions
 2A.4.A, 2A.4.B,
 2A.10.A, 2A.10.B

Before Now Why?

You graphed inverse variation equations.
You will graph rational functions.
So you can find the cost of a group trip, as in Ex. 39.

Key Vocabulary

- rational function
- hyperbola, p. 767
- branches of a hyperbola, $p .767$
- asymptotes of a hyperbola, $p .767$

The inverse variation equation $y=\frac{a}{x}(a \neq 0)$ is a type of rational function. A rational function has a rule given by a fraction whose numerator and denominator are polynomials and whose denominator is not 0 .

KEY CONCEPT

For Your Notebook

Parent Rational Function

The function $y=\frac{1}{x}$ is the parent function for any rational function whose numerator has degree 0 or 1 and whose denominator has degree 1 . The function and its graph have the following characteristics:

- The domain and range are all nonzero real numbers.
- The horizontal asymptote is the x-axis.

EXAMPLE 1 Compare graph of $y=\frac{a}{x}$ with graph of $y=\frac{1}{x}$

REWRITE FUNCTION

 In the function $y=\frac{1}{3 x}$, the value of a is $\frac{1}{3}$ as shown:$y=\frac{1}{3 x}=\frac{1}{3} \cdot \frac{1}{x}$
$=\frac{\frac{1}{3}}{x}$
a. The graph of $y=\frac{-2}{x}$ is a vertical stretch with a reflection in the x-axis of the graph of $y=\frac{1}{x}$.

b. The graph of $y=\frac{1}{3 x}$ is a vertical shrink of the graph of $y=\frac{1}{x}$.

