12.2 Graph Rational Functions

You graphed inverse variation equations.

Now

You will graph rational functions.

Why?

So you can find the cost of a group trip, as in Ex. 39.

Key Vocabulary

- rational function
- **hyperbola**, *p.* 767
- branches of a hyperbola, p. 767
- asymptotes of a hyperbola, p. 767

The inverse variation equation $y = \frac{a}{x}$ ($a \neq 0$) is a type of *rational function*.

A **rational function** has a rule given by a fraction whose numerator and denominator are polynomials and whose denominator is not 0.

KEY CONCEPT

Parent Rational Function

The function $y = \frac{1}{x}$ is the parent function for any rational function whose numerator has degree 0 or 1 and whose denominator has degree 1. The function and its graph have the following characteristics:

vertical stretch with a reflection in the *x*-axis of the graph of

EXAMPLE 1

Compare graph of $y = \frac{a}{x}$ with graph of $y = \frac{1}{x}$

REWRITE FUNCTION

In the function $y = \frac{1}{3x}$, the value of a is $\frac{1}{3}$ as shown:

$$y = \frac{1}{3x} = \frac{1}{3} \cdot \frac{1}{x}$$
$$= \frac{\frac{1}{3}}{x}$$

a. The graph of $y = \frac{-2}{x}$ is a

b. The graph of $y = \frac{1}{3x}$ is a vertical shrink of the graph of $y = \frac{1}{x}$.

