EXAMPLE 5 on p. 768 for Exs. 44–47

WRITING EQUATIONS Tell whether the table represents inverse variation. If so, write the inverse variation equation.

44.	x	4	8	12	16	20	45.	x	-20	-5	14	32	50
	y	1	2	3	4	5		y	-80	-20	56	128	200
46.							47	-					
	x	-10	-5	15	20	40	47.	x	-12	-10	-8	-5	-4
	y	-30	-60	20	15	7.5		у	2	2.4	3	4.8	6

48. REASONING The variables *x* and *y* vary inversely. How does the value of *y* change if the value of *x* is doubled? tripled? Give examples.

GEOMETRY Translate the verbal sentence into an equation using the appropriate geometric formula. Then tell whether the equation represents *direct variation, inverse variation, or neither.*

- **49.** The circumference of a circle with radius *r* units is *C* units.
- **50.** The perimeter of a rectangle with length ℓ units and width w units is 27 units.
- **51.** The volume of a rectangular prism with base *B* square units and height *h* units is 400 cubic units.
- **52. CHALLENGE** The variables *x* and *y* vary inversely with constant of variation *a*. The variables *y* and *z* vary inversely with constant of variation *b*. Write an equation that gives *z* as a function of *x*. Then tell whether *x* and *z* vary *directly* or *inversely*.
- **53. CHALLENGE** The points $(3, a^2 7a + 10)$ and (3a + 1, a + 2) lie on the graph of an inverse variation equation. Find the coordinates of the points.

PROBLEM SOLVING									
EXAMPLE 5 on p. 768 for Exs. 54, 57	54. BICYCLES The table shows the bicycle speed <i>s</i> (in miles per hour) for various pedaling speeds <i>p</i> (in pedal rotations per mile). Tell whether the table represents inverse variation. If so, write the inverse variation equation that relates <i>p</i> and <i>s</i>.								
	Pedaling speed, <i>p</i> (pedal rotations/mi)	831	612	420	305				
	Bicycle speed, <i>s</i> (mi/h)	4.33	5.88	8.57	11.8	27.0			
EXAMPLE 6 on p. 768 for Exs. 55–56, 58 55. ECONOMICS The owner of an electronics store determines that the monthly demand <i>d</i> (in units) for a computer varies inversely with the price <i>p</i> (in dollars) of the computer. When the price is \$700, the monthly demand is 250 units. Write the inverse variation equation that relates <i>p</i> and <i>d</i> . Then find the monthly demand when the price is \$500.									
	- WORKED-OUT SOLUTIONS	blem solvin	ig help at cla	asszone.con					
770	on p. WS1			ND REAS	DNING	REPRESENTATIONS			