

HYPERBOLAS The graph of the inverse variation equation $y = \frac{a}{x}$ ($a \neq 0$) is a **hyperbola**. The two symmetrical parts of a hyperbola are called the **branches** of the hyperbola. The lines that the hyperbola approaches but doesn't intersect are called the **asymptotes of the hyperbola**. The asymptotes of the graph of $y = \frac{a}{x}$ are the *x*-axis and the *y*-axis.

EXAMPLE 4 Use an inverse variation equation

The variables *x* and *y* vary inversely, and y = 6 when x = -3.

- **a.** Write an inverse variation equation that relates *x* and *y*.
- **b.** Find the value of *y* when x = 4.

Solution

a. Because *y* varies inversely with *x*, the equation has the form $y = \frac{a}{r}$.

Use the fact that x = -3 and y = 6 to find the value of *a*.

 $y = \frac{a}{r}$ Write inverse variation equation.

 $6 = \frac{a}{-3}$ Substitute -3 for x and 6 for y.

-18 = a Multiply each side by -3.

An equation that relates x and y is $y = \frac{-18}{x}$.

b. When
$$x = 4$$
, $y = \frac{-18}{4} = -\frac{9}{2}$.

GUIDED PRACTICE for Examples 2, 3, and 4

- **5.** Graph (a) $y = \frac{3}{x}$ and (b) $y = \frac{-3}{x}$.
- **6.** The variables *x* and *y* vary inversely, and y = -2 when x = 12. Write an inverse variation equation that relates *x* and *y*. Then find the value of *y* when x = -3.