Graphs of Direct Variation and Inverse Variation Equations

Direct variation

$y=a x, a>0$

$y=a x, a<0$

Inverse variation

$y=\frac{a}{x}, a<0$

HYPERBOLAS The graph of the inverse variation equation $y=\frac{a}{x}(a \neq 0)$ is a hyperbola. The two symmetrical parts of a hyperbola are called the branches of the hyperbola. The lines that the hyperbola approaches but doesn't intersect are called the asymptotes of the hyperbola. The asymptotes of the graph of $y=\frac{a}{x}$ are the x-axis and the y-axis.

EXAMPLE 4 Use an inverse variation equation

The variables x and y vary inversely, and $y=6$ when $x=-3$.
a. Write an inverse variation equation that relates x and y.
b. Find the value of y when $x=4$.

Solution

a. Because y varies inversely with x, the equation has the form $y=\frac{a}{x}$.

Use the fact that $x=-3$ and $y=6$ to find the value of a.

$$
\begin{aligned}
y & =\frac{a}{x} & & \text { Write inverse variation equation. } \\
6 & =\frac{a}{-3} & & \text { Substitute }-3 \text { for } x \text { and } 6 \text { for } y . \\
-18 & =a & & \text { Multiply each side by }-3 .
\end{aligned}
$$

An equation that relates x and y is $y=\frac{-18}{x}$.
b. When $x=4, y=\frac{-18}{4}=-\frac{9}{2}$.

Guided Practice for Examples 2, 3, and 4

5. Graph (a) $y=\frac{3}{x}$ and (b) $y=\frac{-3}{x}$.
6. The variables x and y vary inversely, and $y=-2$ when $x=12$. Write an inverse variation equation that relates x and y. Then find the value of y when $x=-3$.
