Graph $y=\frac{4}{x}$.

Solution

STEP 1 Make a table by choosing several integer values of x and finding the values of y. Then plot the points. To see how the function behaves for values of x very close to 0 and very far from 0 , make a second table for such values and plot the points.

x	y
-4	-1
-2	-2
-1	-4
0	undefined
1	4
2	2
4	1

x	y
-10	-0.4
-5	-0.8
-0.5	-8
-0.4	-10
0.4	10
0.5	8
5	0.8
10	0.4

STEP 2 Connect the points in Quadrant I by drawing a smooth curve through them. Repeat for the points in Quadrant III.

GRAPHS OF INVERSE VARIATION As shown in Example 2, as you move away from the origin along the x-axis, the graph of an inverse variation equation approaches the x-axis without crossing it. As you move away from the origin along the y-axis, the graph approaches the y-axis without crossing it.

EXAMPLE 3 Graph an inverse variation equation

Graph $y=\frac{-4}{x}$.

Solution

Notice that $y=\frac{-4}{x}=-1 \cdot \frac{4}{x}$. So, for every nonzero value of x, the value of y in $y=\frac{-4}{x}$ is the opposite of the value of y in $y=\frac{4}{x}$. You can graph $y=\frac{-4}{x}$ by reflecting the graph of $y=\frac{4}{x}$ (see Example 2) in the x-axis.

[^0]
[^0]: AnimatedAlgebra at classzone.com

