2.1 Model Inverse Variation

Before

You wrote and graphed direct variation equations.

Now

You will write and graph inverse variation equations.

Why?

So you can find a person's work time, as in Example 6.

Key Vocabulary

- inverse variation
- constant of variation
- hyperbola
- branches of a hyperbola
- asymptotes of a hyperbola

Recall that two variables *x* and *y* show direct variation if y = ax and $a \ne 0$.

The variables x and y show **inverse variation** if $y = \frac{a}{x}$ and $a \ne 0$. The nonzero number a is the **constant of variation**, and y is said to *vary inversely* with x.

Identify direct and inverse variation EXAMPLE 1

Tell whether the equation represents direct variation, inverse variation, or neither.

a.
$$xy = 4$$

b.
$$\frac{y}{2} = x$$

c.
$$y = 2x + 3$$

Solution

a. xy = 4Write original equation.

 $y = \frac{4}{x}$ Divide each side by x.

Because xy = 4 can be written in the form $y = \frac{a}{r}$, xy = 4 represents inverse variation. The constant of variation is 4.

b. $\frac{y}{2} = x$ Write original equation.

y = 2x Multiply each side by 2.

Because $\frac{y}{2} = x$ can be written in the form y = ax, $\frac{y}{2} = x$ represents direct variation.

c. Because y = 2x + 3 cannot be written in the form $y = \frac{a}{r}$ or y = ax, y = 2x + 3 does not represent either direct variation or inverse variation.

GUIDED PRACTICE for Example 1

Tell whether the equation represents direct variation, inverse variation, or neither.

1.
$$y = \frac{2}{x}$$

2.
$$4y = 3x$$

2.
$$4y = 3x$$
 3. $5x - y = 3$ **4.** $xy = \frac{1}{2}$

4.
$$xy = \frac{1}{2}$$