12.1
 A.1.C, A.1.D,
 A.11.B; 2A.10.G

Before
You wrote and graphed direct variation equations.
Now You will write and graph inverse variation equations.
Why? So you can find a person's work time, as in Example 6.

Key Vocabulary

- inverse variation
- constant of variation
- hyperbola
- branches of a hyperbola
- asymptotes of a hyperbola

Recall that two variables x and y show direct variation if $y=a x$ and $a \neq 0$. The variables x and y show inverse variation if $y=\frac{a}{x}$ and $a \neq 0$. The nonzero number a is the constant of variation, and y is said to vary inversely with x.

EXAMPLE 1 Identify direct and inverse variation

Tell whether the equation represents direct variation, inverse variation, or neither.
a. $x y=4$
b. $\frac{y}{2}=x$
c. $y=2 x+3$

Solution

a. $x y=4 \quad$ Write original equation.
$y=\frac{4}{x} \quad$ Divide each side by x.
Because $x y=4$ can be written in the form $y=\frac{a}{x}, x y=4$ represents inverse variation. The constant of variation is 4 .
b. $\quad \frac{y}{2}=x \quad$ Write original equation.
$y=2 x \quad$ Multiply each side by 2.
Because $\frac{y}{2}=x$ can be written in the form $y=a x, \frac{y}{2}=x$ represents direct variation.
c. Because $y=2 x+3$ cannot be written in the form $y=\frac{a}{x}$ or $y=a x$, $y=2 x+3$ does not represent either direct variation or inverse variation.

GUIDED PrACTICE for Example 1

Tell whether the equation represents direct variation, inverse variation, or neither.

1. $y=\frac{2}{x}$
2. $4 y=3 x$
3. $5 x-y=3$
4. $x y=\frac{1}{2}$
