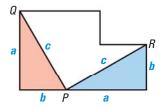
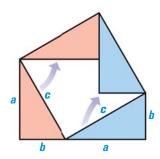
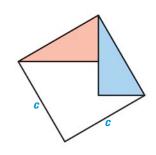

FAKS PREPARATION

TEXAS


TEKS 8.7.C

TAKS Obj. 7 **REVIEWING PROBLEMS INVOLVING THE PYTHAGOREAN THEOREM**


The Pythagorean theorem expresses a relationship among the lengths of the sides of a right triangle. It also expresses a relationship among the areas of squares built on the sides of a right triangle. Consider the demonstration below.

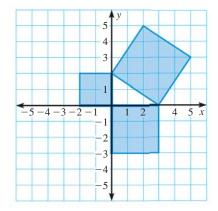

STEP 1 Place squares with areas a^2 square units and b^2 square units next to each other, as shown.

STEP 2 Locate point *P* so that it is *b* units to the right of the lower left corner of the figure, and connect P with corner points *Q* and *R* as shown.

STEP 3 Rotate the red and blue triangles as shown.

STEP 4 The new figure formed is a square with area c^2 square units. It has the combined area of the original squares, so $c^2 = a^2 + b^2$.

EXAMPLE


What is the area of the largest square in the diagram?

Solution

The area of the largest square is equal to the sum of the areas of the two smaller squares. The smaller squares have side lengths of 2 units and 3 units, so their areas are 2^2 and 3^2 , respectively.

Area of largest square $= 2^2 + 3^2 = 13$

The largest square has an area of 13 square units.

