CHAPTER SUMMARY

Animated Algebra classzone.com Electronic Function Library

BIG IDEAS

For Your Notebook

Big Idea 7

Graphing Square Root Functions

You can graph a square root function $y = a\sqrt{x - h} + k$ and compare its graph with the graph of the parent function, $y = \sqrt{x}$, based on the constants *a*, *h*, and *k*.

Constant	Comparison of graphs
а	• When $a > 0$, the graph is a vertical stretch or shrink of the parent graph.
	 When a < 0, the graph is a vertical stretch or shrink with a reflection in the x-axis of the parent graph.
h	The graph is a horizontal translation of the parent graph.
k	The graph is a vertical translation of the parent graph.

Using Properties of Radicals in Expressions and Equations

You can use the properties of radicals to simplify radical expressions and to solve radical equations.

Product property of radicals	$\sqrt{ab} = \sqrt{a} \cdot \sqrt{b}$ where $a \ge 0$ and $b \ge 0$
Quotient property of radicals	$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$ where $a \ge 0$ and $b > 0$

Working with Radicals in Geometry

You can use radicals to solve problems involving the following geometric theorems and formulas.

Pythagorean theorem	If a triangle is a right triangle, then the sum of the squares of the lengths of the legs, <i>a</i> and <i>b</i> , equals the square of the length of the hypotenuse <i>c</i> . $a^2 + b^2 = c^2$
Converse of Pythagorean theorem	If a triangle has side lengths <i>a</i> , <i>b</i> , and <i>c</i> such that $a^2 + b^2 = c^2$, then the triangle is a right triangle.
Distance formula	$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
Midpoint formula	$M\left(\frac{x_{1}+x_{2}}{2},\frac{y_{1}+y_{2}}{2}\right)$