EXAMPLE 2 Find a missing coordinate

INTERPRET GEOMETRICALLY
 The point $(7, b)$ lies on the line $x=7$. If you let the point $(3,-5)$ be the center of a circle with radius 5 , you will see that the circle crosses the line at $(7,-2)$ and (7, -8).

The distance between $(3,-5)$ and $(7, b)$ is 5 units. Find the value of b.

Solution

Use the distance formula with $d=5$. Let $\left(x_{1}, y_{1}\right)=(3,-5)$ and $\left(x_{2}, y_{2}\right)=(7, b)$. Then solve for b.

$$
\begin{aligned}
d & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} & & \text { Distance formula } \\
5 & =\sqrt{(7-3)^{2}+(b-(-5))^{2}} & & \text { Substitute. } \\
5 & =\sqrt{16+b^{2}+10 b+25} & & \text { Multiply. } \\
5 & =\sqrt{b^{2}+10 b+41} & & \text { Simplify. } \\
25 & =b^{2}+10 b+41 & & \text { Square each side. } \\
0 & =b^{2}+10 b+16 & & \text { Write in standard form. } \\
0 & =(b+2)(b+8) & & \text { Factor. } \\
b+2 & =0 \quad \text { or } \quad b+8=0 & & \text { Zero-product property } \\
b & =-2 \text { or } \quad b=-8 & & \text { Solve for } b .
\end{aligned}
$$

- The value of b is -2 or -8 .

GUIDED PRACTICE for Examples 1 and 2

Find the distance between the points.

1. $(3,0),(3,6)$
2. $(-2,1),(2,5)$
3. $(6,-2),(-4,7)$
4. The distance between $(1, a)$ and $(4,2)$ is 3 units. Find the value of a.

MIDPOINT The midpoint of a line segment is the point on the segment that is equidistant from the endpoints. You can find the coordinates of the midpoint of a line segment using the following formula, called the midpoint formula.

KEY CONCEPT

The Midpoint Formula

The midpoint M of the line segment with endpoints $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ is

$$
M\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

