EXAMPLE 2 Use the Pythagorean theorem

A right triangle has one leg that is 2 inches longer than the other leg. The length of the hypotenuse is $\sqrt{10}$ inches. Find the unknown lengths.

Solution

Sketch a right triangle and label the sides with their lengths. Let x be the length of the shorter leg.

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} & & \text { Pythagorean theorem } \\
x^{2}+(x+2)^{2} & =(\sqrt{10})^{2} & & \text { Substitute. } \\
x^{2}+x^{2}+4 x+4 & =10 & & \text { Simplify. } \\
2 x^{2}+4 x-6 & =0 & & \text { Write in standard form. } \\
2(x-1)(x+3) & =0 & & \text { Factor. } \\
x-1=0 \text { or } x+3 & =0 & & \text { Zero-product property } \\
x=1 \text { or } \quad x & =-3 & & \text { Solve for } x .
\end{aligned}
$$

Because length is nonnegative, the solution $x=-3$ does not make sense. The legs have lengths of 1 inch and $1+2=3$ inches.

ELIMINATE CHOICES
The hypotenuse is the longest side of the triangle, so the length must be greater than 52 yards. Eliminate choices A and B.

EXAMPLE 3 TAKS PRACTICE: Multiple Choice

A soccer player makes a corner kick to another player, as shown. To the nearest yard, how far does the player kick the ball?
(A) 7 yards
(B) 50 yards
(C) 54 yards
(D) 66 yards

Solution

The path of the kicked ball is the hypotenuse of a right triangle. The length of one leg is 14 yards, and the length of the other leg is 52 yards.

$$
\begin{aligned}
c^{2} & =a^{2}+b^{2} & & \text { Pythagorean theorem } \\
c^{2} & =14^{2}+52^{2} & & \text { Substitute } \mathbf{1 4} \text { for } \boldsymbol{a} \text { and } \mathbf{5 2} \text { for } \boldsymbol{b} . \\
c^{2} & =2900 & & \text { Simplify. } \\
c & =\sqrt{2900} \approx 54 & & \text { Take positive square root of each side. }
\end{aligned}
$$

- The correct answer is C. (A) (B) (C)

- Guided Practice for Examples 2 and 3

2. A right triangle has one leg that is 3 inches longer than the other leg. The length of the hypotenuse is 15 inches. Find the unknown lengths.
3. SWIMMING A rectangular pool is 30 feet wide and 60 feet long. You swim diagonally across the pool. To the nearest foot, how far do you swim?
