11.4 a.6, A.10.A; 8.9.A

Before
Now
You solved radical equations.
You will use the Pythagorean theorem and its converse.
Why?
So you can examine angles in architecture, as in Ex. 35.

Key Vocabulary

- hypotenuse
- legs of a right triangle
- Pythagorean theorem

The hypotenuse of a right triangle is the side opposite the right angle. It is the longest side of a right triangle. The legs are the two sides that form the right angle.

A theorem is a statement that can be proved true. The Pythagorean theorem states the relationship among the lengths of the sides of a right triangle.

KEY CONCEPT

The Pythagorean Theorem

Words If a triangle is a right triangle, then the sum of the squares of the lengths of the legs equals the square of the length of the hypotenuse.
Algebra $a^{2}+b^{2}=c^{2}$

EXAMPLE 1 Use the Pythagorean theorem

REVIEW QUADRATIC

 EQUATIONSFor help with solving quadratic equations by using square roots, see p. 652.

Find the unknown length for the triangle shown.

Solution

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} & & \text { Pythagorean theorem } \\
a^{2}+6^{2} & =7^{2} & & \text { Substitute } 6 \text { for } b \text { and } 7 \text { for } c . \\
a^{2}+36 & =49 & & \text { Simplify. } \\
a^{2} & =13 & & \text { Subtract } 36 \text { from each side. } \\
a & =\sqrt{13} & & \text { Take positive square root of each side. }
\end{aligned}
$$

- The side length a is $\sqrt{13}$.

AnimatedAlgebra at classzone.com

Guided Practice for Example 1

1. The lengths of the legs of a right triangle are $a=5$ and $b=12$. Find c.
