Lessons 11.1-11.3

MULTIPLE CHOICE

1. STOCKS The number y of companies listed on the New York Stock Exchange for the period 1999-2002 can be modeled by the function $y=3018-146 \sqrt{x}$ where x is the number of years since 1999. About how many more companies were listed on the New York Stock Exchange in 1999 than in 2001? TEKS 2A.9.D
(A) 73
(B) 146
(C) 206
(D) 292
2. RUNNING SPEED A person's maximum running speed s (in meters per second) as a function of the person's leg length ℓ (in meters) is graphed below. To the nearest tenth of a meter, what is the leg length of a person whose maximum running speed is about 3.6 meters per second? TEKS 2A.9.D

(F) 0.6
(G) 0.8
(H) 6.6
(J) 7.4
3. AMPLIFIER The voltage V (in amperes) of an amplifier is given by the function $V=\sqrt{P R}$ where P is the power (in watts) and R is the resistance (in ohms). A particular amplifier uses 10 amperes and has a resistance of 4 ohms. How many watts are produced by the amplifier? TEKS 2A.9.D
(A) 2.5
(B) 5
(C) 25
(D) 40
4. CORN For the period 1994-2001, the annual consumption (in pounds per person) of corn products y in the United States can be modeled by the function $y=6.1 \sqrt{x+15.8}$ where x is the number of years since 1994 . In what year were about 25 pounds of corn products consumed per person? TEKS 2A.9.D

(F) 1995
(G) 1996
(H) 1997
(J) 1998
5. CARS The velocity v (in meters per second) of a car moving in a circular path that has a radius r (in meters) is given by $\nu=\sqrt{\frac{F r}{m}}$ where F is the force (in newtons) pulling the car toward the center of the circle and m is the mass of the car (in kilograms). A 1600 kilogram car is traveling in a circular path with a radius of 175 meters. The force is 200 newtons. What is the velocity (in meters per second) of the car? TEKS 2A.9.D
(A) $\frac{1}{4} \sqrt{7}$
(B) $\frac{5}{8} \sqrt{7}$
(C) $\frac{5}{4} \sqrt{14}$
(D) $2000 \sqrt{14}$

GRIDDED ANSWER

6. SOUND Near Earth's surface, the speed s (in meters per second) of sound through air is given by $s=20 \sqrt{T+273}$ where T is the air temperature (in degrees Celsius). Suppose that a ship is 1000 meters from a loud foghorn and that the air temperature is $16^{\circ} \mathrm{C}$. About how many seconds will it take for the sound to travel to the ship? Round your answer to the nearest tenth of a second. TEKS 2A.9.D
