- 40. **TAKS REASONING** The amount of time *t* (in seconds) it takes a simple pendulum to complete one full swing is called the period of the pendulum and is given by
 - $t = 2\pi \sqrt{\frac{\ell}{32}}$ where ℓ is the length of the pendulum (in feet).
 - **a. Apply** A visitor at a museum notices that a pendulum on display has a period of about 11 seconds. About how long is the pendulum? Use 3.14 for π and round your answer to the nearest foot.
 - **b. Explain** Does increasing the length of a pendulum increase or decrease its period? *Explain*.

41. CHALLENGE The frequency f (in cycles per second) of a string of an

electric guitar is given by the equation $f = \frac{1}{2\ell} \sqrt{\frac{T}{m}}$ where ℓ is the length of

the string (in meters), *T* is the string's tension (in newtons), and *m* is the string's mass per unit length (in kilograms per meter). The high E string of a particular electric guitar is 0.64 meter long with a mass per unit length of 0.000401 kilogram per meter. How much tension is required to produce a frequency of about 330 cycles per second? Would you need more or less tension if you want to create the same frequency on a string with greater mass per unit length? *Explain*.

QUIZ for Lessons 11.1–11.3

1. Graph the function $y = \sqrt{x-3}$ and identify its domain and range. Compare the graph with the graph of $y = \sqrt{x}$. (p. 710)

Simplify the expression. (p. 719)

2. $\sqrt{150}$	3. $\sqrt{2c^2} \cdot \sqrt{8c}$	4. $(7 + \sqrt{5})(2 - \sqrt{5})$
5. $\frac{14}{\sqrt{2}}$	6. $\sqrt{\frac{98}{x^6}}$	7. $\sqrt{\frac{80x^3}{5y}}$

Solve the equation. Check for extraneous solutions. (p. 729)

8. $\sqrt{x} - 15 = 0$ **9.** $\sqrt{4x - 7} = \sqrt{2x + 19}$ **10.** $\sqrt{6x - 5} = x$