SOLVING EQUATIONS Solve the equation. Check for extraneous solutions.
31. $\sqrt{x}+2=\sqrt{x-1}$
32. $2-\sqrt{x+1}=\sqrt{x+3}$
33. $\sqrt{5 x+9}+\sqrt{5 x}=9$
34. WRITING A student solves the equation $\sqrt{x+2}=x$ and finds that $x=2$ or $x=-1$. Without checking by substituting into the equation, which is the extraneous solution, 2 or -1 ? How do you know?
35. CHALLENGE Write a radical equation that has 3 and 4 as solutions.

Problem Solving

EXAMPLE 5 on p. 731
for Exs. 36-38
36. FORESTS The dark green areas on the image shown represent regions with heavy foliage. In Texas, the area of land y (in millions of acres) that was covered by forest during the period 1907-2002 can be modeled by the function $y=2.5 \sqrt{143-x}$ where x is the number of years since 1907. In what year were about 20 million acres of land covered by forest in Texas?
TEXAS @HomeTutor for problem solving help at classzone.com

37. PER CAPITA CONSUMPTION The annual banana consumption y (in pounds per person) in the United States for the period 1970-2000 can be modeled by the function $y=\sqrt{18 x+272}$ where x is the number of years since 1970 . In what year were about 20 pounds of bananas consumed per person?
TEXAS @HomeTutor for problem solving help at classzone.com
38. MULTI-STEP PROBLEM The velocity v (in meters per second) at which a trapeze performer swings can be modeled by the function $v=\sqrt{19.6 d}$ where d is the difference (in meters) between the highest and lowest position of the performer's center of gravity during the swing.
a. A trapeze performer swings at a velocity of 5 meters per second. What is the value of d ?
b. Suppose the performer jumps straight up off
 the starting board, increasing the velocity of the swing by 0.4 meter per second. By how many meters does the value of d increase?
39. BIOLOGY A bushbaby is a small animal that can perform standing jumps of over 2 meters. Scientists found that the time t (in seconds) in which a bushbaby must extend its legs in order to jump to a height h (in meters) is given by the function $t=0.45 \ell \sqrt{\frac{1}{h}}$ where ℓ is the length of the bushbaby's legs (in meters). A particular bushbaby has a leg length of 0.16 meter. The bushbaby can extend its legs in 0.05 second. About how high does the bushbaby jump? Round your answer to the nearest tenth of a meter.

