## EXAMPLE 2 Solve a radical equation

Solve $4 \sqrt{x-7}+12=28$.

## Solution

$$
\begin{aligned}
4 \sqrt{x-7}+12 & =28 & & \text { Write original equation. } \\
4 \sqrt{x-7} & =16 & & \text { Subtract } 12 \text { from each side. } \\
\sqrt{x-7} & =4 & & \text { Divide each side by } 4 . \\
(\sqrt{x-7})^{2} & =4^{2} & & \text { Square each side. } \\
x-7 & =16 & & \text { Simplify. } \\
x & =23 & & \text { Add } 7 \text { to each side. }
\end{aligned}
$$

The solution is 23 .
CHECK To check the solution using a graphing calculator, first rewrite the equation so that one side is $0: 4 \sqrt{x-7}-16=0$. Then graph the related equation $y=4 \sqrt{x-7}-16$. You can see that the graph crosses the $x$-axis at $x=23$.


## sOLVE EQUATIONS

To solve a radical equation that contains two radical expressions, be sure that each side of the equation has only one radical expression before squaring each side.

## EXAMPLE 3 Solve an equation with radicals on both sides

Solve $\sqrt{3 x-17}=\sqrt{x+21}$.

## Solution

$$
\begin{aligned}
\sqrt{3 x-17} & =\sqrt{x+21} & & \text { Write original equation. } \\
(\sqrt{3 x-17})^{2} & =(\sqrt{x+21})^{2} & & \text { Square each side. } \\
3 x-17 & =x+21 & & \text { Simplify. } \\
2 x-17 & =21 & & \text { Subtract } x \text { from each side. } \\
2 x & =38 & & \text { Add } 17 \text { to each side. } \\
x & =19 & & \text { Divide each side by } 2 .
\end{aligned}
$$

The solution is 19 . Check the solution.

## Guided Practice for Examples 2 and 3

## Solve the equation.

2. $\sqrt{x-5}+7=12$
3. $\sqrt{x+4}=\sqrt{2 x-1}$
4. $\sqrt{4 x-3}-\sqrt{x}=0$

EXTRANEOUS SOLUTIONS Squaring both sides of the equation $a=b$ can result in a solution of $a^{2}=b^{2}$ that is not a solution of the original equation. Such a solution is called an extraneous solution. When you square both sides of an equation, check each solution in the original equation to be sure there are no extraneous solutions.

