EXAMPLE 2 Solve a radical equation

Solve $4\sqrt{x-7} + 12 = 28$.

Solution

$4\sqrt{x-7} + 12 = 28$	Write original equation.
$4\sqrt{x-7} = 16$	Subtract 12 from each side.
$\sqrt{x-7} = 4$	Divide each side by 4.
$(\sqrt{x-7})^2 = 4^2$	Square each side.
x - 7 = 16	Simplify.
x = 23	Add 7 to each side.

▶ The solution is 23.

CHECK To check the solution using a graphing calculator, first rewrite the equation so that one side is $0: 4\sqrt{x-7} - 16 = 0$. Then graph the related equation $y = 4\sqrt{x-7} - 16$. You can see that the graph crosses the *x*-axis at x = 23.

EXAMPLE 3 Solve an equation with radicals on both sides

Solve $\sqrt{3x - 17} = \sqrt{x + 21}$.

Solution

SOLVE EQUATIONS

To solve a radical equation that contains two radical expressions, be sure that each side of the equation has only one radical expression before squaring each side.

Write original equation.
Square each side.
Simplify.
Subtract <i>x</i> from each side.
Add 17 to each side.
Divide each side by 2.

The solution is 19. Check the solution.

Guided Practice
 for Examples 2 and 3

 Solve the equation.

$$3. \sqrt{x+4} = \sqrt{2x-1}$$
 $4. \sqrt{4x-3} - \sqrt{x} = 0$

EXTRANEOUS SOLUTIONS Squaring both sides of the equation a = b can result in a solution of $a^2 = b^2$ that is *not* a solution of the original equation. Such a solution is called an **extraneous solution**. When you square both sides of an equation, check each solution in the original equation to be sure there are no extraneous solutions.