RATIONALIZING THE DENOMINATOR Example 4 shows how to eliminate a radical from the denominator of a radical expression by multiplying the expression by an appropriate value of 1. The process of eliminating a radical from an expression's denominator is called **rationalizing the denominator**.

EXAMPLE 4

Rationalize the denominator

MULTIPLY BY 1 In part (a), notice that $\frac{\sqrt{7}}{\sqrt{7}}$ is equal to 1, so multiplying by it does not change the value of the expression.

$\mathbf{a.} \frac{5}{\sqrt{7}} = \frac{5}{\sqrt{7}} \cdot \frac{\sqrt{7}}{\sqrt{7}}$	Multiply by $\frac{\sqrt{7}}{\sqrt{7}}$.
$=rac{5\sqrt{7}}{\sqrt{49}}$	Product property of radicals
$=\frac{5\sqrt{7}}{7}$	Simplify.
b. $\frac{\sqrt{2}}{\sqrt{3b}} = \frac{\sqrt{2}}{\sqrt{3b}} \cdot \frac{\sqrt{3b}}{\sqrt{3b}}$	Multiply by $\frac{\sqrt{3b}}{\sqrt{3b}}$.
$=rac{\sqrt{6b}}{\sqrt{9b^2}}$	Product property of radicals
$=\frac{\sqrt{6b}}{\sqrt{9}\cdot\sqrt{b^2}}$	Product property of radicals
$=\frac{\sqrt{6b}}{3b}$	Simplify.

SUMS AND DIFFERENCES You can use the distributive property to simplify sums and differences of radical expressions when the expressions have the same radicand.

EXAMPLE 5	Add and subtra	ct radicals	
a. $4\sqrt{10} + \sqrt{10}$	$\overline{13} - 9\sqrt{10} = 4\sqrt{10} - $	$-9\sqrt{10}+\sqrt{13}$	Commutative property
	$= (4 - 9)^{-1}$	$\sqrt{10} + \sqrt{13}$	Distributive property
	$= -5\sqrt{10}$	$+\sqrt{13}$	Simplify.
b. $5\sqrt{3} + \sqrt{48}$	$=5\sqrt{3}+\sqrt{16\cdot 3}$	Factor using perfe	ct square factor.
	$=5\sqrt{3}+\sqrt{16}\cdot\sqrt{3}$	Product property	of radicals
	$=5\sqrt{3}+4\sqrt{3}$	Simplify.	
	$= (5 + 4)\sqrt{3}$	Distributive prope	rty
	$=9\sqrt{3}$	Simplify.	

GUIDED PRACTICEfor Examples 4 and 5Simplify the expression.3. $\frac{1}{\sqrt{3}}$ 4. $\frac{1}{\sqrt{x}}$ 5. $\frac{3}{\sqrt{2x}}$ 6. $2\sqrt{7} + 3\sqrt{63}$